02302nam 2200589 450 991046013430332120200520144314.00-309-29745-1(CKB)3710000000260812(EBL)3439932(SSID)ssj0001399037(PQKBManifestationID)12615661(PQKBTitleCode)TC0001399037(PQKBWorkID)11450142(PQKB)11680801(MiAaPQ)EBC3439932(Au-PeEL)EBL3439932(CaPaEBR)ebr11093439(OCoLC)903237541(EXLCZ)99371000000026081220150904h20142014 uy 0engur|n|---|||||txtccrCapturing change in science, technology, and innovation improving indicators to inform policy /Panel on Developing Science, Technology, and Innovation Indicators for the Future ; Robert E. Litan, Andrew W. Wyckoff, and Kaye Husbands Fealing, editors ; Committee on National Statistics ; Division of Behavioral and Social Sciences and Education ; Board on Science, Technology, and Economic Policy ; Division of Policy and Global Affairs ; National Research Council of the National AcademiesWashington, District of Columbia :The National Academies Press,2014.©20141 online resource (274 p.)Description based upon print version of record.0-309-29744-3 Includes bibliographical references.Science and stateResearchResearchUnited StatesTechnological innovationsElectronic books.Science and stateResearch.ResearchTechnological innovations.507.2073Litan Robert E.1950-Wyckoff AndrewFealing Kaye HusbandsNational Research Council (U.S.).Panel on Developing Science, Technology, and Innovation Indicators for the Future,MiAaPQMiAaPQMiAaPQBOOK9910460134303321Capturing change in science, technology, and innovation2265826UNINA04232nam 2200781 a 450 991078593560332120230801225154.03-11-025572-31-283-62792-2978661394037710.1515/9783110255720(CKB)2670000000274148(EBL)893636(OCoLC)812251485(SSID)ssj0001054263(PQKBManifestationID)11613277(PQKBTitleCode)TC0001054263(PQKBWorkID)11126835(PQKB)10302289(MiAaPQ)EBC893636(DE-B1597)123677(OCoLC)840446583(DE-B1597)9783110255720(Au-PeEL)EBL893636(CaPaEBR)ebr10606482(CaONFJC)MIL394037(EXLCZ)99267000000027414820120405d2012 uy 0engurnn#---|u||utxtccrRegularization methods in Banach spaces[electronic resource] /by Thomas Schuster ... [et al.]Berlin ;Boston De Gruyterc20121 online resource (296 p.)Radon series on computational and applied mathematics,1865-3707 ;10Radon Series on Computational and Applied Mathematics ;10Description based upon print version of record.3-11-220450-6 3-11-025524-3 Includes bibliographical references and index.Front matter --Preface --Contents --Part I. Why to use Banach spaces in regularization theory? --Part II. Geometry and mathematical tools of Banach spaces --Part III. Tikhonov-type regularization --Part IV. Iterative regularization --Part V. The method of approximate inverse --Bibliography --IndexRegularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.Radon Series on Computational and Applied MathematicsBanach spacesParameter estimationDifferential equations, PartialBanach Space.Iterative Method.Regularization Theory.Tikhonov Regularization.Banach spaces.Parameter estimation.Differential equations, Partial.515/.732SK 520SEPArvkSchuster Thomas1971-1162550Hofmann BerndKaltenbacher BarbaraKazimierski Kamil S.MiAaPQMiAaPQMiAaPQBOOK9910785935603321Regularization methods in Banach spaces3718160UNINA