04740nam 2200637Ia 450 991045884240332120200520144314.01-281-07670-897866110767020-08-055472-5(CKB)1000000000383602(EBL)330158(OCoLC)469642281(SSID)ssj0000258173(PQKBManifestationID)11223997(PQKBTitleCode)TC0000258173(PQKBWorkID)10254402(PQKB)11181944(MiAaPQ)EBC330158(PPN)230052436(Au-PeEL)EBL330158(CaPaEBR)ebr10196358(CaONFJC)MIL107670(EXLCZ)99100000000038360220070104d2007 uy 0engur|n|---|||||txtccrThe theory of critical distances[electronic resource] a new perspective in fracture mechanics /David TaylorAmsterdam ;London Elsevierc20071 online resource (307 p.)Description based upon print version of record.0-08-044478-4 Includes bibliographical references and index.Front Cover; The Theory of Critical Distances: A New Perspective in Fracture Mechanics; Copyright Page; Contents; Preface; Nomenclature; Chapter 1. Introduction; 1.1 Stress-Strain Curves; 1.2 Failure Mechanisms; 1.3 Stress Concentrations; 1.4 Elastic Stress Fields for Notches and Cracks; 1.5 Fracture Mechanics; 1.6 The Failure of Notched Specimens; 1.7 Finite Element Analysis; 1.8 Concluding Remarks: Limitations and Challenges in Failure Prediction; Chapter 2. The Theory of Critical Distances: Basics; 2.1 Introduction; 2.2 Example 1: Brittle Fracture in a Notched Specimen2.3 Example 2: Fatigue Failure in an Engineering Component2.4 Relating the TCD to LEFM; 2.5 Finding Values for the Material Constants; 2.6 Some Other TCD Methods: The LM, AM and VM; 2.7 Example 3: Predicting Size Effects; 2.8 Concluding Remarks; Chapter 3. The Theory of Critical Distances in Detail; 3.1 Introduction; 3.2 History; 3.3 Related Theories; 3.4 What is the TCD? Towards a General Definition; Chapter 4. Other Theories of Fracture; 4.1 Introduction; 4.2 Some Classifications; 4.3 Mechanistic Models; 4.4 Statistical Models; 4.5 Modified Fracture Mechanics4.6 Plastic-Zone and Process-Zone Theories4.7 Damage Mechanics; 4.8 Concluding Remarks; Chapter 5. Ceramics; 5.1 Introduction; 5.2 Engineering Ceramics; 5.3 Building materials; 5.4 Geological Materials; 5.5 Nanomaterials; 5.6 Concluding Remarks; Chapter 6. Polymers; 6.1 Introduction; 6.2 Notches; 6.3 Size Effects; 6.4 Constraint and the Ductile-Brittle Transition; 6.5 Strain Rate and Temperature Effects; 6.6 Discussion; Chapter 7. Metals; 7.1 Introduction; 7.2 Predicting Brittle Fracture Using the TCD; 7.3 Discussion; Chapter 8. Composites; 8.1 Introduction8.2 Early Work on the TCD: Whitney and Nuismer8.3 Does L Vary with Notch Size?; 8.4 Non-damaging Notches; 8.5 Practical Applications; 8.6 Other Theoretical Models; 8.7 Fracture of Bone; 8.8 Values of L for Composite Materials; 8.9 Concluding Remarks; Chapter 9. Fatigue; 9.1 Introduction; 9.2 Fatigue Limit Predictions; 9.3 Finite Life Predictions; 9.4 Multiaxial and Variable Amplitude Loading; 9.5 Fatigue in Non-Metallic Materials; 9.6 Other Recent Theories; 9.7 Concluding Remarks; Chapter 10. Contact Problems; 10.1 Introduction; 10.2 Contact Situations; 10.3 Contact Stress Fields12.4 Failure Analysis of a Marine ComponentCritical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods - until now. So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest. The book beFracture mechanicsFracture mechanicsMathematical modelsElectronic books.Fracture mechanics.Fracture mechanicsMathematical models.620.1126Taylor David20950MiAaPQMiAaPQMiAaPQBOOK9910458842403321The theory of critical distances2269226UNINA