04051nam 22007212 450 991045795120332120151005020621.01-107-16158-41-280-54067-297866105406790-511-21550-90-511-21729-30-511-21192-90-511-31588-00-511-84169-80-511-21369-7(CKB)1000000000353001(EBL)266627(OCoLC)171139168(SSID)ssj0000182779(PQKBManifestationID)11156117(PQKBTitleCode)TC0000182779(PQKBWorkID)10172847(PQKB)11086572(UkCbUP)CR9780511841699(MiAaPQ)EBC266627(Au-PeEL)EBL266627(CaPaEBR)ebr10131606(CaONFJC)MIL54067(OCoLC)144618414(EXLCZ)99100000000035300120101021d2004|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierAn introduction to noncommutative noetherian rings /K.R. Goodearl, R.B. Warfield, Jr[electronic resource]Second edition.Cambridge :Cambridge University Press,2004.1 online resource (xxiv, 344 pages) digital, PDF file(s)London Mathematical Society student texts ;61Title from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-54537-4 0-521-83687-5 Includes bibliographical references (p. [328]-337) and index.Cover; Series-title; Title; Copyright; Contents; Introduction to the Second Edition; Introduction to the First Edition; Prologue; 1. A Few Noetherian Rings; 2. Skew Polynomial Rings; 3. Prime Ideals; 4. Semisimple Modules, Artinian Modules, and Torsionfree Modules; 5. Injective Hulls; 6. Semisimple Rings of Fractions; 7. Modules over Semiprime Goldie Rings; 8. Bimodules and A.liated Prime Ideals; 9. Fully Bounded Rings; 10. Rings and Modules of Fractions; 11. Artinian Quotient Rings; 12. Links Between Prime Ideals; 13. The Artin-Rees Property; 14. Rings Satisfying the Second Layer Condition15. Krull Dimension16. Numbers of Generators of Modules; 17. Transcendental Division Algebras; Appendix. Some Test Problems for Noetherian Rings; Bibliography; IndexThis 2004 introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. Various important settings, such as group algebras, Lie algebras, and quantum groups, are sketched at the outset to describe typical problems and provide motivation. The text then develops and illustrates the standard ingredients of the theory: e.g., skew polynomial rings, rings of fractions, bimodules, Krull dimension, linked prime ideals. Recurring emphasis is placed on prime ideals, which play a central role in applications to representation theory. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. Material includes the basic types of quantum groups, which then serve as test cases for the theory developed.London Mathematical Society student texts ;61.Noetherian ringsNoncommutative ringsNoetherian rings.Noncommutative rings.512/.4Goodearl K. R.57894Warfield Robert B.1940-UkCbUPUkCbUPBOOK9910457951203321Introduction to noncommutative noetherian rings921290UNINA00966nam a2200277 i 450099100218856970753620020508191953.0980402s1984 it ||| | ita 8835927617b10972250-39ule_instPARLA156975ExLDip.to Scienze dell'Antichitàita937.07Auguet, Roland141929Caligola :o il potere a vent'anni /Roland AuguetRoma :Editori Riuniti,1984164 p. ;21 cm.I testi [Editori riuniti] ;65Storia romanaCaligolaBiografieCaligola ou le pouvoir à vingt ans.b1097225002-04-1428-06-02991002188569707536LE015 937 - 22112015000013163le007-E0.00-l- 00000.i1108308628-06-02Caligola470707UNISALENTOle00701-01-98ma -itait 01