00895nam0-2200313---450-99000946857040332120130311153737.0000946857FED01000946857(Aleph)000946857FED0100094685720111027f19001990km-y0itay50------baitaITa-------001yyTecnica micologica medicapatogenesi ed anatomia patologica generale delle micosi umane e dgli animaliPiero RedaelliBolognaL. Cappelli[19--]227 p.ill.26 cmMicologiaRedaelli,Piero512895ITUNINARICAUNIMARCBK99000946857040332149 E 105052DMVAPI 3 2221DMVMIDMVAPDMVMITecnica micologica medica852777UNINA03402nam 22006732 450 991045774290332120151005020621.01-107-15482-01-280-51593-797866105159360-511-22032-40-511-22120-70-511-21923-70-511-31459-00-511-61682-10-511-21991-1(CKB)1000000000352418(EBL)261126(OCoLC)228144788(SSID)ssj0000238238(PQKBManifestationID)11176434(PQKBTitleCode)TC0000238238(PQKBWorkID)10222283(PQKB)11374013(UkCbUP)CR9780511616822(MiAaPQ)EBC261126(PPN)137615175(Au-PeEL)EBL261126(CaPaEBR)ebr10130351(CaONFJC)MIL51593(EXLCZ)99100000000035241820090915d2006|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierRiemannian geometry a modern introduction /Isaac Chavel[electronic resource]Second edition.Cambridge :Cambridge University Press,2006.1 online resource (xvi, 471 pages) digital, PDF file(s)Cambridge studies in advanced mathematics ;98Title from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-61954-8 0-521-85368-0 Includes bibliographical references (p. 449-464) and indexes.I.Riemannian manifolds --II.Riemannian curvature --III.Riemannian volume --IV.Riemannian coverings --V.Surfaces --VI.Isoperimetric inequalities (constant curvature) --VII.The kinematic density --VIII.Isoperimetric inequalities (variable curvature) --IX.Comparison and finiteness theorems.This book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space.Cambridge studies in advanced mathematics ;98.Geometry, RiemannianGeometry, Riemannian.516.3/73Chavel Isaac53814UkCbUPUkCbUPBOOK9910457742903321Riemannian geometry336905UNINA