02012nam0 2200361 i 450 SUN003515720161012023752.95788-339-5342-40.0020050401d1974 |0itac50 baitaIT|||| |||||*Analisi reale e complessaWalter RudinTorinoBoringhieri1974451 p.ill.24 cm.001SUN00318662001 Programma di matematica, fisica, elettronica210 TorinoBollati Boringhieri.001SUN00790552001 Real and Complex Analysis28076Algebra astrattaFISUNC01198526-XXReal functions [MSC 2020]MFSUNC019778TorinoSUNL000001512.221Rudin, Walter1921-2010SUNV0296631759BoringhieriSUNV001017650ITSOL20200727RICASUN0035157UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 26-XX 3844 08 6020 I b 20060911 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS 26-XX 3844 08 20 I a 20060911 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 90w22 smarrito 08 4837 20120907 DeterioratoUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA03PREST VAc4 03 104 20160405 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI INGEGNERIA05CONS D IV 193 05 3021 20050401 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI INGEGNERIA05CONS D IV 192 05 3028 20050609 Real and complex analysis28076UNICAMPANIA05297nam 2200637Ia 450 991045458180332120200520144314.0981-283-287-4(CKB)1000000000766123(EBL)1193658(SSID)ssj0000518838(PQKBManifestationID)12139967(PQKBTitleCode)TC0000518838(PQKBWorkID)10494984(PQKB)11273713(MiAaPQ)EBC1193658(WSP)00001479 (Au-PeEL)EBL1193658(CaPaEBR)ebr10688070(CaONFJC)MIL498385(OCoLC)747539687(EXLCZ)99100000000076612320090204d2008 uy 0engur|n|---|||||txtccrLectures on quantum field theory[electronic resource] /Ashok DasSingapore ;Hackensack, NJ World Scientificc20081 online resource (792 p.)Description based upon print version of record.981-283-286-6 981-283-285-8 Includes bibliographical references and index.Contents; Preface; 1 Relativistic equations; 1.1 Introduction; 1.2 Notations.; 1.3 Klein-Gordon equation; 1.3.1 Klein paradox; 1.4 Dirac equation.; 1.5 References; 2 Solutions of the Dirac equation; 2.1 Plane wave solutions; 2.2 Normalization of the wave function; 2.3 Spin of the Dirac particle.; 2.4 Continuity equation.; 2.5 Dirac's hole theory; 2.6 Properties of the Dirac matrices; 2.6.1 Fierz rearrangement; 2.7 References; 3 Properties of the Dirac equation; 3.1 Lorentz transformations; 3.2 Covariance of the Dirac equation; 3.3 Transformation of bilinears.3.4 Projection operators, completeness relation3.5 Helicity; 3.6 Massless Dirac particle; 3.7 Chirality; 3.8 Non-relativistic limit of the Dirac equation.; 3.9 Electron in an external magnetic field; 3.10 Foldy-Wouthuysen transformation.; 3.11 Zitterbewegung; 3.12 References; 4 Representations of Lorentz and Poincar ́e groups; 4.1 Symmetry algebras; 4.1.1 Rotation; 4.1.2 Translation; 4.1.3 Lorentz transformation; 4.1.4 Poincar ́e transformation; 4.2 Representations of the Lorentz group; 4.2.1 Similarity transformations and representations; 4.3 Unitary representations of the Poincar ́e group4.3.1 Massive representation4.3.2 Massless representation; 4.4 References; 5 Free Klein-Gordon field theory; 5.1 Introduction; 5.2 Lagrangian density; 5.3 Quantization.; 5.4 Field decomposition.; 5.5 Creation and annihilation operators.; 5.6 Energy eigenstates; 5.7 Physical meaning of energy eigenstates; 5.8 Green's functions; 5.9 Covariant commutation relations; 5.10 References; 6 Self-interacting scalar field theory; 6.1 N ̈other's theorem; 6.1.1 Space-time translation; 6.2 Self-interacting 4 theory.; 6.3 Interaction picture and time evolution operator; 6.4 S-matrix6.5 Normal ordered product and Wick's theorem6.6 Time ordered products and Wick's theorem; 6.7 Spectral representation and dispersion relation; 6.8 References; 7 Complex scalar field theory; 7.1 Quantization.; 7.2 Field decomposition.; 7.3 Charge operator; 7.4 Green's functions; 7.5 Spontaneous symmetry breaking and the Goldstone theorem; 7.6 Electromagnetic coupling.; 7.7 References; 8 Dirac field theory.; 8.1 Pauli exclusion principle; 8.2 Quantization of the Dirac field.; 8.3 Field decomposition.; 8.4 Charge operator; 8.5 Green's functions; 8.6 Covariant anti-commutation relations8.7 Normal ordered and time ordered products8.8 Massless Dirac fields; 8.9 Yukawa interaction; 8.10 Feynman diagrams; 8.11 References; 9 Maxwell field theory; 9.1 Maxwell's equations.; 9.2 Canonical quantization; 9.3 Field decomposition.; 9.4 Photon propagator; 9.5 Quantum electrodynamics; 9.6 Physical processes; 9.7 Ward-Takahashi identity in QED; 9.8 Covariant quantization of the Maxwell theory; 9.9 References; 10 Dirac method for constrained systems; 10.1 Constrained systems; 10.2 Dirac method and Dirac bracket.; 10.3 Particle moving on a sphere; 10.4 Relativistic particle10.5 Dirac field theoryThis book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactioQuantum field theoryTextbooksField theory (Physics)Electronic books.Quantum field theoryField theory (Physics)530.14/3Das Ashok1953-49961MiAaPQMiAaPQMiAaPQBOOK9910454581803321Lectures on quantum field theory2110067UNINA