02638nam 2200649Ia 450 991045434650332120200520144314.01-282-19698-797866121969803-11-915945-X3-11-020824-510.1515/9783110208245(CKB)1000000000691523(EBL)364731(OCoLC)476197368(SSID)ssj0000258280(PQKBManifestationID)11209740(PQKBTitleCode)TC0000258280(PQKBWorkID)10257130(PQKB)10716157(MiAaPQ)EBC364731(DE-B1597)34862(OCoLC)703226792(DE-B1597)9783110208245(Au-PeEL)EBL364731(CaPaEBR)ebr10256444(CaONFJC)MIL219698(EXLCZ)99100000000069152320080404d2008 uy 0engur|||||||||||txtccrTheory of uniform approximation of functions by polynomials[electronic resource] /Vladislav K. Dzyadyk, Igor A. ShevchukBerlin ;New York Walter De Gruyterc20081 online resource (496 p.)Description based upon print version of record.3-11-020147-X Includes bibliographical references (p. [437]-477) and index. Frontmatter -- Contents -- Chapter 1. Chebyshev theory and its development -- Chapter 2. Weierstrass theorems -- Chapter 3. On smoothness of functions -- Chapter 4. Extension -- Chapter 5. Direct theorems on the approximation of periodic functions -- Chapter 6. Inverse theorems on the approximation of periodic functions -- Chapter 7. Approximation by polynomials -- BackmatterA thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions.Approximation theoryFunctional analysisElectronic books.Approximation theory.Functional analysis.511/.4Dzi͡adyk Vladislav Kirillovich1044959Shevchuk Igor A1044960MiAaPQMiAaPQMiAaPQBOOK9910454346503321Theory of uniform approximation of functions by polynomials2470888UNINA