05592nam 2200721Ia 450 991045393780332120200520144314.01-281-96822-69786611968229981-281-880-4(CKB)1000000000549736(EBL)1193545(SSID)ssj0000291246(PQKBManifestationID)12080049(PQKBTitleCode)TC0000291246(PQKBWorkID)10249144(PQKB)10074713(MiAaPQ)EBC1193545(WSP)00006892(Au-PeEL)EBL1193545(CaPaEBR)ebr10698991(CaONFJC)MIL196822(OCoLC)316005688(EXLCZ)99100000000054973620080915d2008 uy 0engur|n|---|||||txtccrChaos, complexity and transport[electronic resource] theory and applications : proceedings of the CCT '07, Marseille, France, 4-8 June 2007 /edited by Cristel Chandre, Xavier Leoncini, George ZaslavskySingapore ;Hackensack, NJ World Scientificc20081 online resource (376 p.)Description based upon print version of record.981-281-879-0 Includes bibliographical references.Preface; CONTENTS; THEORY; Out-of-Equilibrium Phase Transitions in Mean-Field Hamiltonian Dynamics P.-H. Chavanis, G. De Ninno, D. Fanelli and S. Ruff0; 1. Introduction; 2. On the emergence of quasi-stationary states: Predictions from the Lynden-Bell theory within the Vlasov picture; 3. Properties of the homogeneous Lynden-Bell distribution; 4. Stability of the Lynden-Bell homogeneous phase; 5. The rectangular water-bag initial condition: phase diagram in the (Mo, 27) plane; 6. The general case: Phase diagram in the ( fo , U ) plane; 7. Conclusions; Acknowledgements; ReferencesStochastic Webs in Multidimensions G. M. Zaslavsky and M. Edelman1. Introduction; 2. Kicked Two Coupled Oscillators; 3. Symmetry of the Stochastic Web; 4. More Coupled Oscillators; 5 . Conclusion; Acknowledgments; References; Chaotic Geodesics J.-L. Thiffeault and K . Kamhawi; 1. Introduction; 2. Coordinate System; 2.1. Separating the Shallow Direction; 2.2. Substrate Coordinates; 3. Equations of Motion; 3.1. Small-parameter Expansion; 3.2. Solution in Terms of Characteristics; 4. Fluid Particle Trajectories; 5 . Lyapunov Exponents and Chaos; 6 . Discussion; ReferencesA Steady Mixing Flow with No-Slip Boundaries R. S. MacKay1. Introduction; 2. The construction; 3. Mixing; 4. Discussion; Appendix; Acknowledgements; References; Complexity and Entropy in Colliding Particle Systems M. Courbage and S. M. Saberi Fathi; 1. Introduction; 2. Entropy for collision map; 3. Hard disks; 4. Concluding remarks; Appendix A. Collision Map; References; Wave Condensation S. Rica; 1. Introduction; 2. Wave equation; 3. Kinetics Theory and Bose-Einstein condensation; 4. Dynamics before collapse; 5. Kinetics Theory with a condensate; 5.1. Early stage5.2. Late stage: The appearance of coherence and the Bogoluibov spectra6. Comments and remarks; References; Transport in Deterministic Ratchets: Periodic Orbit Analysis of a Toy Model R. Artuso, L. Cavallasca and G. Cristadoro; 1. Introduction; 2. Parrondo games and their deterministic version; 3. Periodic orbit theory of deterministic Parrondo games; 4. Periodic hopping framework; 5. Conclusions and perspectives; Acknowledgments; References; Separatrix Chaos: New Approach to the Theoretical lleatment S. M. Soskin, R. Mannella and 0. M. Yevtushenko; 1. Introduction; 2. Basic ideas3. Application to the double-separatrix chaos4. Single-separatrix layer: estimates of the largest width; References; Giant Acceleration in Weakly-Perturbed Space-Periodic Hamiltonian Systems M. Yu. Uleysky and D. V. Malcarov; 1. Introduction; References; Local Control of Area-Preserving Maps C. Chandre, M. Vittot and G. Caraolo; 1. Introduction; 2. Derivation of the control term; 3. Numerical examples; 3.1. Application to the standard map; 3.2. Application to the tokamap; References; APPLICATIONS; (1) PLASMA & FLUIDSImplications of Topological Complexity and Hamiltonian Chaos in the Edge Magnetic Field of Toroidal Fusion Plasmas 7'. E. EvansThis book aims to provide the readers with a wide panorama of different aspects related to Chaos, Complexity and Transport. It consists of a collection of contributions ranging from applied mathematics to experiments, presented during the CCT'07 conference (Marseilles, June 4-8, 2007). The book encompasses different traditional fields of physics and mathematics while trying to keep a common language among the fields, and targets a nonspecialized audience.Chaotic behavior in systemsCongressesNonlinear theoriesCongressesTransport theoryCongressesFluid dynamicsCongressesElectronic books.Chaotic behavior in systemsNonlinear theoriesTransport theoryFluid dynamics003.857Chandre Cristel996124Zaslavsky George M26214Leoncini Xavier936143MiAaPQMiAaPQMiAaPQBOOK9910453937803321Chaos, complexity and transport2282774UNINA02744nam0 2200457 i 450 VAN005347320240313022943.216978-35-406-2025-920060927d1996 |0itac50 baengDE|||| |||||Quasi-periodic motions in families of dynamical systemsorder amidst chaosH. W. Broer, G. B. Huitema, M. B. SevryukBerlinSpringer1996XI, 195 p.24 cm001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer164534C23Bifurcation theory for ordinary differential equation [MSC 2020]VANC019985MF37-XXDynamical systems and ergodic theory [MSC 2020]VANC020363MF34CxxQualitative theory for ordinary differential equation [MSC 2020]VANC020690MF37J40Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]VANC020698MF70H05Hamilton's equations [MSC 2020]VANC020701MF34D30Structural stability and analogous concepts of solutions to ordinary differential equation [MSC 2020]VANC022362MF34C20Transformation and reduction of ordinary differential equations and systems, normal forms [MSC 2020]VANC022910MF34D20Stability of solutions to ordinary differential equation [MSC 2020]VANC022916MF70K30Nonlinear resonances for nonlinear problems in mechanics [MSC 2020]VANC023348MF37C55Periodic and quasiperiodic flows and diffeomorphisms [MSC 2020]VANC023369MF11K60Diophantine approximation in probabilistic number theory [MSC 2020]VANC023370MFBerlinVANL000066BroerHendrik W.VANV04218113459HuitemaGeorge B.VANV04218261531SevryukMikhail B.VANV04218357101Springer <editore>VANV108073650Broer, Hendrik WolterBroer, Hendrik W.VANV063727Huitema, G. B.Huitema, George B.VANV064452ITSOL20240614RICA/sebina/repository/catalogazione/documenti/Broer, Huitema, Sevryuk - Quasi-periodic motions in families of dynamical systems.pdfContentsBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08VAN0053473BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 37-XX 0580 08 5425 I 20060927 Quasi-periodic motions in families of dynamical systems78834UNICAMPANIA