05633nam 2200709 a 450 991045320180332120200520144314.01-281-93809-29786611938093981-277-955-8(CKB)1000000000538166(EBL)1679419(OCoLC)879023624(SSID)ssj0000178851(PQKBManifestationID)11189181(PQKBTitleCode)TC0000178851(PQKBWorkID)10229836(PQKB)11205019(MiAaPQ)EBC1679419(WSP)00001865 (Au-PeEL)EBL1679419(CaPaEBR)ebr10255385(CaONFJC)MIL193809(EXLCZ)99100000000053816620071218d2008 uy 0engur|n|---|||||txtccrInfinite dimensional stochastic analysis[electronic resource] in honor of Hui-Hsiung Kuo /editors, Ambar N. Sengupta, P. SundarNew Jersey World Scientificc20081 online resource (257 p.)QP-PQ, quantum probability and white noise analysis ;v. 22Description based upon print version of record.981-277-954-X Includes bibliographical references and index.CONTENTS; Preface; Complex White Noise and the Infinite Dimensional Unitary Group T. Hida; 1. Introduction; 2. Complex white noise; 3. Infinite dimensional unitary group; 4. Subgroups of U(Ee); References; Complex Ito Formulas M. Redfern; 1. Introduction; 2. Background and Notation; 3. Complex White Noise Analysis; 4. Calculus of (Dc*)-Valued Processes; 5. Real Case; References; White Noise Analysis: Background and a Recent Application J. Becnel and A . N. Sengupta; 1. Introduction; 2. Background: The Schwartz Space as a Nuclear Space2.1. Hermite polynomials, creation and annihilation operators2.2. The Schwartz space as a nuclear space; 2.3. The abstract formulation; 2.4. Gaussian measure in infinite dimensions; 3. White Noise Distribution Theory; 3.1. Wiener-Ito isomorphism; 3.2. Properties of test functions; 3.3. The Segal-Bargmann transform; 3.3.1. The S-transform over subspaces; 4. Application to Quantum Computing; 4.1. Quantum algorithms; 4.2. Hidden subspace algorithm; Acknowledgment; References; Probability Measures with Sub-Additive Principal Szego-Jacobi Parameters A. Stan; 1. Introduction; 2. Background3. Wick product4. Random variables with sub-additive w-parameters; References; Donsker's Functional Calculus and Related Questions P.-L. Chow and J. Potthoff; 1. Introduction; 2. Donsker's Calculus; 3. Tools from White Noise Analysis and Malliavin Calclus; 3.1. Chaos Decomposition; 3.2. S-Transform; 3.3. Smooth and Generalized Random Variables; 3.4. Differential Operators; 3.5. Characterization Theorem and Wick Product; 4. Fourier-Wiener Transform; 5. Independence and Ito Calculus; 5.1. Independence of Generalized Random Variables; 5.2. Ito Calculus for Generalized Stochastic Processes5.3. Donsker's Delta Function6. Towards Donsker's Calculus; References; Stochastic Analysis of Tidal Dynamics Equation U. Manna, J. L. Menaldi, and S. S. Sritharan; 1. Introduction; 2. Tidal Dynamics: The Model; 3. Deterministic Setting: Global Monotonicity and Solvability; 4. Stochastic Tide Equation; Acknowledgments; References; Adapted Solutions to the Backward Stochastic Navier-Stokes Equations in 3D P. Sundar and H. Yin; 1. Introduction; 2. Preliminaries; 3. A Priori Estimates; 4. Existence of Solutions; 5. Uniqueness of Solutions; ReferencesSpaces of Test and Generalized Functions of Arcsine White Noise Formulas A . Barhoumi, A . Riahi, and H. Ouerdiane1. Introduction; 2. Arcsine White Noise Space; 2.1. Arcsine space in one dimension; 2.2. Construction of the arcsine white noise space; 3. Arcsine Test and Generalized Functions Spaces; 4. Characterization Theorems; 4.1. The S-transform; 4.2. Characterization of test and generalized functions; References; An Infinite Dimensional Fourier-Mehler Transform and the Levy Laplacian K. Saito and K. Sakabe; 1. Introduction; 2. A compensated Levy process and the Levy distributions3. The Levy Laplacian acting on the Levy distributions This volume contains current work at the frontiers of research in infinite dimensional stochastic analysis. It presents a carefully chosen collection of articles by experts to highlight the latest developments in white noise theory, infinite dimensional transforms, quantum probability, stochastic partial differential equations, and applications to mathematical finance. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduatQP-PQ ;v. 22.QP-PQ, quantum probability and white noise analysis ;v. 22.White noise theoryStochastic analysisElectronic books.White noise theory.Stochastic analysis.519.2/2Kuo Hui-Hsiung1941-12283Sengupta Ambar1963-150693Sundar P(Padmanabhan)903218MiAaPQMiAaPQMiAaPQBOOK9910453201803321Infinite dimensional stochastic analysis2019051UNINA04830nam 22006732 450 991077739070332120160331093134.01-107-12054-31-280-42137-197866104213740-511-17469-10-511-04097-00-511-15469-00-511-32524-X0-511-54226-70-511-04615-4(CKB)1000000000001505(EBL)201670(OCoLC)475915607(SSID)ssj0000124347(PQKBManifestationID)11129073(PQKBTitleCode)TC0000124347(PQKBWorkID)10013874(PQKB)10395092(UkCbUP)CR9780511542268(Au-PeEL)EBL201670(CaPaEBR)ebr10062690(CaONFJC)MIL42137(MiAaPQ)EBC201670(PPN)261309188(EXLCZ)99100000000000150520090505d2001|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierCognitive ecology of pollination animal behavior and floral evolution /edited by Lars Chittka and James D. Thomson[electronic resource]Cambridge :Cambridge University Press,2001.1 online resource (xiii, 344 pages) digital, PDF file(s)Title from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-01840-4 0-521-78195-7 Includes bibliographical references.The effect of variation among floral traits on the flower constancy of pollinators / Robert J. Gegear and Terence M. Laverty -- Behavioral and neural mechanisms of learning and memory as determinants of flower constancy / Randolf Menzel -- Subjective evaluation and choice behavior by nectar- and pollen-collecting bees / Keith D. Waddington -- Honeybee vision and floral displays: from detection to close-up recognition / Martin Giurfa and Miriam Lehrer -- Floral scent, olfaction, and scent-driven foraging behavior / Robert A. Raguso -- Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision / Lars Chittka, Johannes Spaethe, Annette Schmidt, Anja Hickelsberger -- Foraging and spatial learning in hummingbirds / Susan D. Healy and T. Andrew Hurly -- Bats as pollinators: foraging energetics and floral adaptations / York Winter and Otto von Helversen -- Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies / Martha R. Weiss -- Pollinator individuality: when does it matter? / James D. Thomson and Lars Chittka -- Effects of predation risk on pollinators and plants / Reuven Dukas -- Pollinator preference, frequency dependence, and floral evolution / Ann Smithson -- Pollinator-mediated assortative mating: causes and consequences / Kristina Niovi Jones -- Behavioural responses of pollinators to variation in floral display size and their influences on the evolution of floral traits / Kazuharu Ohashi and Tetsukazu Yahara -- The effects of floral design and display on pollinator economics and pollen dispersal / Lawrence D. Harder, Neal M. Williams, Crispin Y. Jordan and William A. Nelson -- Pollinator behavior and plant speciation: looking beyond the "ethological isolation" paradigm / Nickolas M. Waser.Important breakthroughs have recently been made in our understanding of the cognitive and sensory abilities of pollinators: how pollinators perceive, memorise and react to floral signals and rewards; how they work flowers, move among inflorescences and transport pollen. These new findings have obvious implications for the evolution of floral display and diversity, but most existing publications are scattered across a wide range of journals in very different research traditions. This book brings together for the first time outstanding scholars from many different fields of pollination biology, integrating the work of neuroethologists and evolutionary ecologists to present a multi-disciplinary approach. Aimed at graduates and researchers of behavioural and pollination ecology, plant evolutionary biology and neuroethology, it will also be a useful source of information for anyone interested in a modern view of cognitive and sensory ecology, pollination and floral evolution.PollinatorsEcophysiologyPollinationPollinatorsEcophysiology.Pollination.571.8642Chittka Lars1963-Thomson James D.1950-UkCbUPUkCbUPBOOK9910777390703321Cognitive ecology of pollination854828UNINA