05718nam 2200745 450 991045319070332120200520144314.00-08-101318-30-08-098352-9(CKB)2550000001171229(EBL)1581380(OCoLC)866444540(SSID)ssj0001141540(PQKBManifestationID)11620324(PQKBTitleCode)TC0001141540(PQKBWorkID)11092697(PQKB)10738223(MiAaPQ)EBC1581380(Au-PeEL)EBL1581380(CaPaEBR)ebr10822519(CaONFJC)MIL552629(EXLCZ)99255000000117122920140110d2014 uy| 0engur|n|---|||||txtccrFlow-induced vibrations classifications and lessons from practical experiences /editors, Shigehiko Kaneko [and seven others]Second edition.London :Academic Press,2014.1 online resource (423 p.)Description based upon print version of record.0-08-098347-2 1-306-21378-9 Includes bibliographical references and index.Front Cover; Flow-Induced Vibrations: Classifications and Lessons from Practical Experiences; Copyright Page; Contents; Preface; 1 Introduction; 1.1 General overview; 1.1.1 History of FIV research; 1.1.2 Origin of this book; 1.2 Modeling approaches; 1.2.1 The importance of modeling; 1.2.2 Classification of FIV and modeling; 1.2.3 Modeling procedure; 1.2.3.1 Simplified treatment; 1.2.3.2 Detailed treatment; 1.2.4 Analytical approach; 1.2.5 Experimental approach; 1.2.5.1 Test facilities; 1.2.5.2 Similarity laws; 1.2.5.2.1 Structural model; 1.2.5.2.2 Fluid model1.3 Fundamental mechanisms of FIV1.3.1 Self-induced oscillation mechanisms; 1.3.1.1 One-degree-of-freedom system; 1.3.1.2 Two-degrees-of-freedom system; 1.3.1.3 Multi-degrees-of-freedom system; 1.3.2 Forced vibration and added mass and damping; 1.3.2.1 Forced vibration system; 1.3.2.2 Added mass; 1.3.2.3 Fluid damping; References; 2 Vibration Induced by Cross-Flow; 2.1 Single circular cylinder; 2.1.1 Structures under evaluation; 2.1.2 Vibration mechanisms and historical review; 2.1.2.1 Vibration mechanisms; 2.1.2.1.1 Bending vibration of a circular cylindrical structure in steady flow2.1.2.1.2 Vibration of a circular cylinder in oscillating flow2.1.2.1.3 Ovalling vibrations of cylindrical shells in steady flow; 2.1.2.2 Historical background; 2.1.2.2.1 Bending vibrations of a circular cylinder in steady flow; 2.1.2.2.2 Vibration of a circular cylinder in oscillating flow; 2.1.2.2.3 Ovalling vibrations of cylindrical shells in steady flow; 2.1.3 Evaluation methods; 2.1.3.1 Bending vibrations of a circular cylinder in steady flow; 2.1.3.1.1 Vibration induced by single-phase flow; 2.1.3.1.2 Vibration induced by two-phase flow2.1.3.2 Vibration of a circular cylinder in oscillating flow2.1.3.3 Ovalling vibrations of cylindrical shells in steady flow; 2.1.4 Examples of component failures due to vortex-induced vibration; 2.2 Two circular cylinders in cross-flow; 2.2.1 Outline of structures of interest; 2.2.1.1 Examples; 2.2.1.2 Classification based on flow type; 2.2.1.3 Classification based on spatial configuration; 2.2.2 Historical background; 2.2.2.1 Excitation phenomena; 2.2.2.1.1 Vibration of cylinder pairs subjected to steady cross-flow; 2.2.2.1.2 Oscillatory-flow-induced vibration; 2.2.2.2 Research background2.2.2.2.1 Steady-flow-induced cylinder vibration2.2.2.2.2 Oscillatory flow; 2.2.2.2.3 Vibration of cylinder pairs in two-phase flow; 2.2.3 Evaluation methodology; 2.2.3.1 Experimental evaluation; 2.2.3.1.1 Vibration of cylinder pair in single-phase flow; 2.2.3.2 Theoretical modeling; 2.2.3.2.1 Wake interference mathematical model; 2.2.3.2.2 Fluid-structure coupled analysis; 2.2.3.2.3 Determination of instability boundary by unsteady fluid force models; 2.2.3.2.4 Quasi-steady theory; 2.2.4 Examples of practical problems; 2.3 Multiple circular cylinders; 2.3.1 Outline of structures considered2.3.2 Vibration evaluation history In many plants, vibration and noise problems occur due to fluid flow, which can greatly disrupt smooth plant operations. These flow-related phenomena are called flow-induced vibration. This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design. The world-leading author team doesn't assume prior knowledge of mathematical methods and provides the reader with information on the basics of modeling. The book includes several practical examples and thorough explanations of the structure, the evaluation methodMachineryVibrationMachineryVibrationMathematical modelsStructural dynamicsStructural dynamicsMathematical modelsFluid dynamicsFluid dynamicsMathematical modelsElectronic books.MachineryVibration.MachineryVibrationMathematical models.Structural dynamics.Structural dynamicsMathematical models.Fluid dynamics.Fluid dynamicsMathematical models.423Kaneko S(Shigehiko)903438MiAaPQMiAaPQMiAaPQBOOK9910453190703321Flow-induced vibrations2019710UNINA