03066nam 22007094a 450 991045175040332120210524211031.01-282-19503-497866121950373-11-916004-03-11-020002-310.1515/9783110200027(CKB)1000000000520527(EBL)325661(OCoLC)232160040(SSID)ssj0000148906(PQKBManifestationID)11154408(PQKBTitleCode)TC0000148906(PQKBWorkID)10245202(PQKB)11221739(MiAaPQ)EBC325661(DE-B1597)32453(OCoLC)979752994(DE-B1597)9783110200027(Au-PeEL)EBL325661(CaPaEBR)ebr10194849(CaONFJC)MIL219503(OCoLC)935267410(EXLCZ)99100000000052052720030303d2003 uy 0engurun#---|u||utxtccrEquivariant degree theory[electronic resource] /Jorge Ize, Alfonso VignoliReprint 2012Berlin ;New York Walter de Gruyter20031 online resource (384 p.)De Gruyter series in nonlinear analysis and applications,0941-813X ;8Description based upon print version of record.3-11-017550-9 Includes bibliographical references (p. [337]-358) and index.Front matter --Preface --Contents --Introduction --Chapter 1. Preliminaries --Chapter 2. Equivariant Degree --Chapter 3. Equivariant Homotopy Groups of Spheres --Chapter 4. Equivariant Degree and Applications --Appendix A. Equivariant Matrices --Appendix Β. Periodic Solutions of Linear Systems --Bibliography --IndexThis book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties.Gruyter series in nonlinear analysis and applications ;8.Topological degreeHomotopy groupsElectronic books.Topological degree.Homotopy groups.514/.2SK 300rvkIze Jorge1946-876707Vignoli Alfonso1940-60716MiAaPQMiAaPQMiAaPQBOOK9910451750403321Equivariant degree theory2460397UNINA