03435nam 2200553Ia 450 991043815300332120200520144314.03-642-31695-610.1007/978-3-642-31695-1(CKB)3400000000102751(SSID)ssj0000788854(PQKBManifestationID)11462938(PQKBTitleCode)TC0000788854(PQKBWorkID)10828719(PQKB)10974478(DE-He213)978-3-642-31695-1(MiAaPQ)EBC3070963(PPN)16832007X(EXLCZ)99340000000010275120121007d2013 uy 0engurnn|008mamaatxtccrIntroduction to stokes structures /Claude Sabbah1st ed. 2013.Berlin Springerc20131 online resource (XIV, 249 p. 14 illus., 1 illus. in color.) Lecture notes in mathematics,1617-9692 ;2060Bibliographic Level Mode of Issuance: Monograph3-642-31694-8 Includes bibliographical references and index.1.T-filtrations --2.Stokes-filtered local systems in dimension one --3.Abelianity and strictness --4.Stokes-perverse sheaves on Riemann surfaces --5.The Riemann-Hilbert correspondence for holonomic D-modules on curves --6.Applications of the Riemann-Hilbert correspondence to holonomic distributions --7.Riemann-Hilbert and Laplace on the affine line (the regular case) --8.Real blow-up spaces and moderate de Rham complexes --9.Stokes-filtered local systems along a divisor with normal crossings --10.The Riemann-Hilbert correspondence for good meromorphic connections (case of a smooth divisor) --11.Good meromorphic connections (formal theory) --12.Good meromorphic connections (analytic theory) and the Riemann-Hilbert correspondence --13.Push-forward of Stokes-filtered local systems --14.Irregular nearby cycles --15.Nearby cycles of Stokes-filtered local systems.This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed.Lecture notes in mathematics (Springer-Verlag) ;2060.Differential equations, LinearStokes' theoremDifferential equations, Linear.Stokes' theorem.515/.354Sabbah Claude311999MiAaPQMiAaPQMiAaPQBOOK9910438153003321Introduction to Stokes structures241611UNINA