01324nam0-2200385---450-99000088341020331620020424131738.088-7104-885-70088341USA010088341(ALEPH)000088341USA01008834120020117d1994----km-y0ITAy01------baitaIT||||||||001yy<<I>> minorenni e la drogauna ricerca sulla realtà umbraAmbrogio SantambrogioNapoliEdizioni scientifiche italiane1994253 p.24 cmCollana di scienze socialiUniversità degli studi di Perugia, Facoltà di scienze politiche12001Collana di scienze socialiUniversità degli studi di Perugia, Facoltà di scienze politiche1Adolescenti tossicomaniUmbriaIndagine statistica362.2930835SANTAMBROGIO,Ambrogio120029ITsalbcISBD990000883410203316X 18 XIV 13246 ECX 18 XIVBKECOPATTY9020020117USA01164020020403USA011732PATRY9020020424USA011317PATRY9020040406USA011701Minorenni e la droga456773UNISA00983nam--2200361---450-99000138712020331620040202172353.0000138712USA01000138712(ALEPH)000138712USA0100013871220040202d1958----km-y0itay0103----baengGB||||||||001yySir Thomas Maloryby M. C. BradbrookLondonLongmans195840 p.22 cmWriter and their work2001Writer and their work2001001-------2001Malory,ThomasBRADBROOK,Muriel Clara157481ITsalbcISBD990001387120203316IIi C 559(171934 L.M.IIi CBKUMASIAV41020040202USA011723PATRY9020040406USA011738Sir Thomas Malory165533UNISA05227nam 22008535 450 991043803410332120250411131904.00-8176-8361-510.1007/978-0-8176-8361-0(CKB)3710000000015695(EBL)1030320(OCoLC)857364786(SSID)ssj0000988260(PQKBManifestationID)11627770(PQKBTitleCode)TC0000988260(PQKBWorkID)10971179(PQKB)10734804(DE-He213)978-0-8176-8361-0(MiAaPQ)EBC6315427(MiAaPQ)EBC1030320(Au-PeEL)EBL1030320(CaPaEBR)ebr10976194(PPN)172416809(EXLCZ)99371000000001569520130823d2013 u| 0engur|n|---|||||txtccrQuantile-Based Reliability Analysis /by N. Unnikrishnan Nair, P.G. Sankaran, N. Balakrishnan1st ed. 2013.New York, NY :Springer New York :Imprint: Birkhäuser,2013.1 online resource (411 p.)Statistics for Industry and Technology,2364-625XDescription based upon print version of record.0-8176-8360-7 Includes bibliographical references (pages 361-383) and index.Preface -- Chapter I Quantile Functions -- Chapter II Quantile-Based Reliability Concepts -- Chapter III Quantile Function Models -- Chapter IV Ageing Concepts -- Chapter V Total Time on Test Transforms (TTT) -- Chapter VI L-Moments of Residual Life and Partial Moments -- Chapter VII Nonmonotone Hazard Quantile Functions -- Chapter VIII Stochastic Orders in Reliability -- IX Estimation and Modeling.- References -- Index.Quantile-Based Reliability Analysis presents a novel approach to reliability theory using quantile functions in contrast to the traditional approach based on distribution functions. Quantile functions and distribution functions are mathematically equivalent ways to define a probability distribution. However, quantile functions have several advantages over distribution functions. First, many data sets with non-elementary distribution functions can be modeled by quantile functions with simple forms. Second, most quantile functions approximate many of the standard models in reliability analysis quite well. Consequently, if physical conditions do not suggest a plausible model, an arbitrary quantile function will be a good first approximation. Finally, the inference procedures for quantile models need less information and are more robust to outliers.   Quantile-Based Reliability Analysis’s innovative methodology is laid out in a well-organized sequence of topics, including:   ·       Definitions and properties of reliability concepts in terms of quantile functions; ·       Ageing concepts and their interrelationships; ·       Total time on test transforms; ·       L-moments of residual life; ·       Score and tail exponent functions and relevant applications; ·       Modeling problems and stochastic orders connecting quantile-based reliability functions.   An ideal text for advanced undergraduate and graduate courses in reliability and statistics, Quantile-Based Reliability Analysis also contains many unique topics for study and research in survival analysis, engineering, economics, and the medical sciences. In addition, its illuminating discussion of the general theory of quantile functions is germane to many contexts involving statistical analysis.  .Statistics for Industry and Technology,2364-625XStatisticsProbabilitiesStatisticsBiometryMathematical modelsStatistical Theory and MethodsProbability TheoryStatistics in Engineering, Physics, Computer Science, Chemistry and Earth SciencesStatistics in Business, Management, Economics, Finance, InsuranceBiostatisticsMathematical Modeling and Industrial MathematicsStatistics.Probabilities.Statistics.Biometry.Mathematical models.Statistical Theory and Methods.Probability Theory.Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.Statistics in Business, Management, Economics, Finance, Insurance.Biostatistics.Mathematical Modeling and Industrial Mathematics.519.287Nair N. Unnikrishnanauthttp://id.loc.gov/vocabulary/relators/aut861199Sankaran P.Gauthttp://id.loc.gov/vocabulary/relators/autBalakrishnan Nauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910438034103321Quantile-Based Reliability Analysis2508213UNINA