02326nlm0 22006251i 450 9900092599104033219783642010200000925991FED01000925991(Aleph)000925991FED0100092599120100926d2009----km-y0itay50------baengDEdrnn-008mamaaEvolutionary Multi-Criterion OptimizationRisorsa elettronica5th International Conference, EMO 2009, Nantes, France, April 7-10, 2009. Proceedingsedited by David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao, Marc SevauxBerlin ; HeidelbergSpringer2009Lecture Notes in Computer Science0302-97435467Documento elettronicoTestoFormato html, pdfEhrgott,MatthiasFonseca,Carlos M.Gandibleux,XavierHao,Jin-KaoHutchison,DavidKanade,TakeoKittler,JosefKleinberg,Jon M.Mattern,FriedemannMitchell,John C.Naor,MoniNierstrasz,OscarPandu Rangan,C.Sevaux,MarcSteffen,BernhardSudan,MadhuTerzopoulos,DemetriTygar,DougVardi,Moshe Y.Weikum,GerhardITUNINAREICATUNIMARCFull text per gli utenti Federico IIhttp://dx.doi.org/10.1007/978-3-642-01020-0EB990009259910403321Algorithm Analysis and Problem ComplexityArtificial intelligenceArtificial Intelligence (incl. Robotics)Computer scienceComputer ScienceComputer softwareElectronic data processingNumeric ComputingEvolutionary Multi-Criterion Optimization771896UNINA05032nam 22006375 450 991043803230332120200706181924.01-4614-8024-810.1007/978-1-4614-8024-2(CKB)3710000000024281(EBL)1466028(SSID)ssj0001049515(PQKBManifestationID)11682089(PQKBTitleCode)TC0001049515(PQKBWorkID)11019232(PQKB)11421493(DE-He213)978-1-4614-8024-2(MiAaPQ)EBC6314785(MiAaPQ)EBC1466028(Au-PeEL)EBL1466028(CaPaEBR)ebr10983424(OCoLC)861183180(PPN)176098240(EXLCZ)99371000000002428120131001d2013 u| 0engur|n|---|||||txtccrLie Groups /by Daniel Bump2nd ed. 2013.New York, NY :Springer New York :Imprint: Springer,2013.1 online resource (532 p.)Graduate Texts in Mathematics,0072-5285 ;225Description based upon print version of record.1-4614-8023-X Includes bibliographical references and index.Part I: Compact Topological Groups -- 1 Haar Measure -- 2 Schur Orthogonality -- 3 Compact Operators -- 4 The Peter–Weyl Theorem -- Part II: Compact Lie Groups -- 5 Lie Subgroups of GL(n,C) -- 6 Vector Fields -- 7 Left-Invariant Vector Fields -- 8 The Exponential Map -- 9 Tensors and Universal Properties -- 10 The Universal Enveloping Algebra -- 11 Extension of Scalars -- 12 Representations of sl(2,C) -- 13 The Universal Cover -- 14 The Local Frobenius Theorem -- 15 Tori -- 16 Geodesics and Maximal Tori -- 17 The Weyl Integration Formula -- 18 The Root System -- 19 Examples of Root Systems -- 20 Abstract Weyl Groups -- 21 Highest Weight Vectors -- 22 The Weyl Character Formula -- 23 The Fundamental Group -- Part III: Noncompact Lie Groups -- 24 Complexification -- 25 Coxeter Groups -- 26 The Borel Subgroup -- 27 The Bruhat Decomposition -- 28 Symmetric Spaces -- 29 Relative Root Systems -- 30 Embeddings of Lie Groups -- 31 Spin -- Part IV: Duality and Other Topics -- 32 Mackey Theory -- 33 Characters of GL(n,C) -- 34 Duality between Sk and GL(n,C) -- 35 The Jacobi–Trudi Identity -- 36 Schur Polynomials and GL(n,C) -- 37 Schur Polynomials and Sk. 38 The Cauchy Identity -- 39 Random Matrix Theory -- 40 Symmetric Group Branching Rules and Tableaux -- 41 Unitary Branching Rules and Tableaux -- 42 Minors of Toeplitz Matrices -- 43 The Involution Model for Sk -- 44 Some Symmetric Alegras -- 45 Gelfand Pairs -- 46 Hecke Algebras -- 47 The Philosophy of Cusp Forms -- 48 Cohomology of Grassmannians -- Appendix: Sage -- References -- Index.This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.Graduate Texts in Mathematics,0072-5285 ;225Topological groupsLie groupsTopological Groups, Lie Groupshttps://scigraph.springernature.com/ontologies/product-market-codes/M11132Topological groups.Lie groups.Topological Groups, Lie Groups.512.482Bump Danielauthttp://id.loc.gov/vocabulary/relators/aut56694MiAaPQMiAaPQMiAaPQBOOK9910438032303321Lie groups748529UNINA