00773cam0-2200277 --450 991042875920332120210113104608.0978-88-921-2018-120210113d2019----kmuy0itay5050 baitaIT 001yyArbitrato, contratto, dannoGiorgio De NovaTorinoGiappichelli2019276 p.24 cmScritti in parte già pubblicatiControversieArbitratoItalia347.450923De Nova,Giorgio437488ITUNINAREICATUNIMARCBK9910428759203321nuac3472019/826FGBCFGBCArbitrato, contratto, danno1760759UNINA05256nam 2200481 450 991083002380332120231110221859.01-119-52517-91-119-52519-51-119-52521-7(CKB)5590000000463856(MiAaPQ)EBC6939784(Au-PeEL)EBL6939784(EXLCZ)99559000000046385620221107d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierElectromagnetic metasurfaces theory and applications /Christophe Caloz, Karim AchouriHoboken, New Jersey :Wiley-IEEE Press,[2021]©20211 online resource (214 pages)IEEE Press 1-119-52516-0 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Metamaterials -- 1.2 Emergence of Metasurfaces -- Chapter 2 Electromagnetic Properties of Materials -- 2.1 Bianisotropic Constitutive Relations -- 2.2 Temporal Dispersion -- 2.2.1 Causality and Kramers-Kronig Relations -- 2.2.2 Lorentz Oscillator Model -- 2.3 Spatial Dispersion -- 2.4 Lorentz Reciprocity Theorem -- 2.5 Poynting Theorem -- 2.6 Energy Conservation in Lossless-Gainless Systems -- 2.7 Classification of Bianisotropic Media -- Chapter 3 Metasurface Modeling -- 3.1 Effective Homogeneity -- 3.1.1 The Homogeneity Paradox -- 3.1.2 Theory of Periodic Structures -- 3.1.3 Scattering from Gratings -- 3.1.4 Homogenization -- 3.2 Effective Zero Thickness -- 3.3 Sheet Boundary Conditions -- 3.3.1 Impedance Modeling -- 3.3.2 Polarizability Modeling -- 3.3.3 Susceptibility Modeling -- 3.3.4 Comparisons Between the Models -- 3.3.4.1 Microscopic and Macroscopic Perspectives -- 3.3.4.2 Material Tensor Dimensions and Normal Polarizations -- 3.3.4.3 Uniform and Nonuniform Metasurfaces -- 3.3.4.4 Extension to Time‐Varying or Nonlinear Systems -- Chapter 4 Susceptibility Synthesis -- 4.1 Linear Time‐Invariant Metasurfaces -- 4.1.1 Basic Assumptions -- 4.1.2 Birefringent Metasurfaces -- 4.1.3 Multiple‐Transformation Metasurfaces -- 4.1.4 Relations Between Susceptibilities and Scattering Parameters -- 4.1.5 Surface‐Wave Eigenvalue Problem -- 4.1.5.1 Formulation of the Problem -- 4.1.5.2 Dispersion in a Symmetric Environment -- 4.1.6 Metasurfaces with Normal Polarizations -- 4.1.7 Illustrative Examples -- 4.1.7.1 Polarization Rotation -- 4.1.7.2 Multiple Nonreciprocal Transformations -- 4.1.7.3 Angle‐Dependent Transformations -- 4.2 Time‐Varying Metasurfaces -- 4.2.1 Formulation of the Problem -- 4.2.2 Harmonic‐Generation Time‐Varying Metasurface.4.3 Nonlinear Metasurfaces -- 4.3.1 Second‐Order Nonlinearity -- 4.3.1.1 Frequency‐Domain Approach -- 4.3.1.2 Time‐Domain Approach -- Chapter 5 Scattered Field Computation -- 5.1 Fourier‐Based Propagation Method -- 5.2 Finite‐Difference Frequency‐Domain Method -- 5.3 Finite‐Difference Time‐Domain Method -- 5.3.1 Time‐Varying Dispersionless Metasurfaces -- 5.3.2 Time‐Varying Dispersive Metasurfaces -- 5.4 Spectral‐Domain Integral Equation Method -- Chapter 6 Practical Implementation -- 6.1 General Implementation Procedure -- 6.2 Basic Strategies for Full‐Phase Coverage -- 6.2.1 Linear Polarization -- 6.2.1.1 Metallic Scattering Particles -- 6.2.1.2 Dielectric Scattering Particles -- 6.2.2 Circular Polarization -- 6.3 Full‐Phase Coverage with Perfect Matching -- 6.4 Effects of Symmetry Breaking -- 6.4.1 Angular Scattering -- 6.4.2 Polarization Conversion -- Chapter 7 Applications -- 7.1 Angle‐Independent Transformation -- 7.2 Perfect Matching -- 7.3 Generalized Refraction -- 7.3.1 Limitations of Conventional Synthesis Methods -- 7.3.2 Perfect Refraction Using Bianisotropy -- Chapter 8 Conclusions -- Chapter 9 Appendix -- 9.1 Approximation of Average Fields at an Interface -- 9.2 Fields Radiated by a Sheet of Dipole Moments -- 9.3 Relations Between Susceptibilities and Polarizabilities -- References -- Index -- EULA."This book introduces fundamental principles as well as applications of metasurfaces, i.e. electromagnetically thin structures manipulating EM wave propagation. The authors describe the precursors and history of metasurfaces before moving on to explore the physical insights that can be gained from the material parameters of the metasurface. They also present how to compute the fields scattered by a metasurface, with known material parameters, being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate it its material parameters to physical structures.The book finishes with a discussion of the future of the field"--Provided by publisher.IEEE Press MetasurfacesMetasurfaces.620.11267Achouri Karim1653802Caloz Christophe1969-MiAaPQMiAaPQMiAaPQBOOK9910830023803321Electromagnetic metasurfaces4005279UNINA