01503nam a2200349 i 450099100142092970753620020507193141.0990611s1994 it ||| | ita 8820424673b10845185-39ule_instLE01312008ExLDip.to Matematicaeng511.8AMS 68-01Ausiello, Giorgio439546Teoria e progetto di algoritmi fondamentali /di Giorgio Ausiello, Alberto Marchetti-Spaccamela, Marco Protasi6. edMilano :F. Angeli,1994464 p. :ill. ;22 cmScienze e tecnologie informatiche ;1385.2Contiene bibliografia e indiciComputer science-textbooksMarchetti-Spaccamela, Albertoauthorhttp://id.loc.gov/vocabulary/relators/aut25887Protasi, Marco.b1084518523-02-1728-06-02991001420929707536LE013 68-XX AUS12 C.1 (1994)12013000116976le013-E0.00-l- 10000.i1095565328-06-02LE013 68-XX AUS12 C.2 (1994)22013000116983le013-E0.00-l- 06060.i1095566528-06-02LE013 68-XX AUS12 C.3 (1994)32013000116990le013-E0.00-l- 08080.i1095567728-06-02Teoria e progetto di algoritmi fondamentali1456049UNISALENTOle01301-01-99ma -itait 0303910nam 2200961z- 450 9910404075603321202102123-03928-709-5(CKB)4100000011302382(oapen)https://directory.doabooks.org/handle/20.500.12854/60381(oapen)doab60381(EXLCZ)99410000001130238220202102d2020 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierSymmetry in Classical and Fuzzy Algebraic Hypercompositional StructuresMDPI - Multidisciplinary Digital Publishing Institute20201 online resource (208 p.)3-03928-708-7 This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation ? on a hypergroup, some new properties of the(hyper)homography1-hypergroupapplicationbreakable semigroupclustering protocolsedge regularego networksfunctions on multisetfundamental equivalence relationfundamental relationfuzzy multi-Hv-idealfuzzy multisetgranular computingheightHv-idealHv-ringHv-structureshyperfieldhypergrouphyperidealhyperringintuitionistic fuzzy soft hyper BCK idealintuitionistic fuzzy soft s-weak hyper BCK-idealintuitionistic fuzzy soft strong hyper BCK-idealintuitionistic fuzzy soft weak hyper BCK idealinvertible subhypergrouplevel hypergraphslinear differential operatorlower approximationlower BCK-semilatticem-polar fuzzy equivalence relationm-polar fuzzy hypergraphsminimal prime decompositionminimal prime factormultisetmultisetsordered groupperfect edge regularq-rung picture fuzzy graphsq-rung picture fuzzy line graphsquasi-automatonquasi-multiautomatonrelative annihilatorrough setselection operationsemi-prime closure operationsemi-symmetrysemihypergroupsingle-power cyclic hypergroupsquare q-rung picture fuzzy graphssubmultisettime-varying artificial neurontransposition hypergroupupper approximationUWSNCristea Irinaauth739796BOOK9910404075603321Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures3024326UNINA