01129nas 2200361-a 450 991038878610332120240413023145.0(CKB)110978979119097(CONSER)---88649853-(EXLCZ)9911097897911909719880323b19882002 --- aengtxtrdacontentcrdamediacrrdacarrierAccounting for law firms[New York, N.Y.] Leader Publications[c1988-1 online resourceTitle from caption.Print version: Accounting for law firms. 0898-8102 (DLC)---88649853- (OCoLC)17665307 AccountingACCOUNTING & FINANCIAL PLANNING FOR LAW FIRMSAccount. law firmsLawyersUnited StatesAccountingPeriodicalsLaw officesUnited StatesPeriodicalsLawyersAccountingLaw offices657JOURNAL9910388786103321exl_impl conversionAccounting for law firms2578229UNINA02202nam0 22004573i 450 VAN024875620230529021216.65N978303050876020220729d2020 |0itac50 baengCH|||| |||||Can Mathematics Be Proved Consistent?Gödel's Shorthand Notes & Lectures on IncompletenessJan von PlatoChamSpringer2020ix, 263 p.ill.24 cm001VAN00511232001 Sources and studies in the history of mathematics and physical sciences210 Berlin [etc.]SpringerVAN0248757Can Mathematics Be Proved Consistent?208332003-XXMathematical logic and foundations [MSC 2020]VANC019750MF01A70Biographies, obituaries, personalia, bibliographies [MSC 2020]VANC019752MF01A60History of mathematics in the 20th century [MSC 2020]VANC021492MF01A75Collected or selected works; reprintings or translations of classics [MSC 2020]VANC021493MF03F40Gödel numberings and issues of incompleteness [MSC 2020]VANC024403MFCompleteness problemKW:KGerman mathematiciansKW:KGödel incompleteness theoremKW:KGödel lecturesKW:KGödel notesKW:KIncompleteness theoremsKW:KPrincipia MathematicaKW:KSkolem's paradoxKW:KCHChamVANL001889von PlatoJanVANV094802766770Springer <editore>VANV108073650ITSOL20240614RICAhttp://doi.org/10.1007/978-3-030-50876-0E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0248756BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 4583 08eMF4583 20220729 Can Mathematics Be Proved Consistent2083320UNICAMPANIA