00760cam0-2200277 --450 991036535790332120200123135333.0041914570220200123d1994----km y0itay50 baengGBa 001yyBridge bearings and expansion jointsDavid J. Lee2nd ed.London [etc.]Chapman & Hall1994VIII, 212 p.ill.20x25 cmPontiCostruzione624.25720Lee,David J.772387ITUNINAREICATUNIMARCBK9910365357903321C 1/35s.i.DINTRDINTRBridge bearings and expansion joints1576897UNINA01159nam0 22002771i 450 UON0034011420231205104255.55020091021d1930 |0itac50 bafreFR|||| 1||||ˆLe ‰portefeuille de Lamennais, 1818-1836publié et annoté par Georges GoyauParisLa Renaissance du Livre1930VIII, 222 p.21 cm.001UON003295082001 Nouvelle bibliothèque romantique210 ParisLa renaissance du livre2LAMENNAIS, HUGUES-FÉLICITÉ ROBERT deUONC072050FIFRParisUONL002984844Letteratura francese. Saggi21GOYAUGeorgesUONV121321455817Renaissance du LivreUONV247204650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00340114SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI Francese V B LAM GOY SI DC 1319 5 Portefeuille de Lamennais, 1818-18361362670UNIOR03349nam 22006495 450 991048451290332120250609111935.09783540745877354074587410.1007/978-3-540-74587-7(CKB)1000000000437248(SSID)ssj0000320689(PQKBManifestationID)11283764(PQKBTitleCode)TC0000320689(PQKBWorkID)10249582(PQKB)11558802(DE-He213)978-3-540-74587-7(MiAaPQ)EBC3062161(MiAaPQ)EBC6283211(PPN)123739659(MiAaPQ)EBC336891(EXLCZ)99100000000043724820100301d2008 u| 0engurnn|008mamaatxtccrWeighted Littlewood-Paley Theory and Exponential-Square Integrability /by Michael Wilson1st ed. 2008.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2008.1 online resource (XIII, 227 p.) Lecture Notes in Mathematics,0075-8434 ;1924Bibliographic Level Mode of Issuance: Monograph9783540745822 3540745823 Includes bibliographical references (pages [219]-221) and index.Some Assumptions -- An Elementary Introduction -- Exponential Square -- Many Dimensions; Smoothing -- The Calderón Reproducing Formula I -- The Calderón Reproducing Formula II -- The Calderón Reproducing Formula III -- Schrödinger Operators -- Some Singular Integrals -- Orlicz Spaces -- Goodbye to Good-? -- A Fourier Multiplier Theorem -- Vector-Valued Inequalities -- Random Pointwise Errors.Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications.Lecture Notes in Mathematics,0075-8434 ;1924Fourier analysisDifferential equations, PartialFourier Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12058Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Fourier analysis.Differential equations, Partial.Fourier Analysis.Partial Differential Equations.515.2433Wilson Michaelauthttp://id.loc.gov/vocabulary/relators/aut309333MiAaPQMiAaPQMiAaPQBOOK9910484512903321Weighted Littlewood-Paley theory and exponential-square integrability230588UNINA