01750nam 2200397z- 450 9910346945203321202102111000005304(CKB)4920000000101070(oapen)https://directory.doabooks.org/handle/20.500.12854/54912(oapen)doab54912(EXLCZ)99492000000010107020202102d2006 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierNumerical analysis of Lattice Boltzmann Methods for the heat equation on a bounded intervalKIT Scientific Publishing20061 online resource (VII, 190 p. p.)3-86644-069-3 Lattice Boltzmann methods are a promising approach for the numerical solution of fluid-dynamic problems. We consider the one-dimensional Goldstein-Taylor model with the aim to answer some of the questions concerning the numerical analysis of lattice Boltzmann schemes. Discretizations for the solution of the heat equation are presented for a selection of boundary conditions. Stability and convergence of the solutions are proved by employing energy estimates and explicit Fourier representations.CFDConvergenceGitter-Boltzmann-MethodeHeat EquationKonvergenzLattice-BoltzmannNumerische StrömungssimulationWärmeleitungsgleichungWeiß Jan-Philippauth1331389BOOK9910346945203321Numerical analysis of Lattice Boltzmann Methods for the heat equation on a bounded interval3040355UNINA