00640nam 2200217zu 450 991089800110332120241015140556.09789920285612(CKB)36338478600041(EXLCZ)993633847860004120241015|2023uuuu || |engur|||||||||||Capitalismes Émergents Et Modèles De Développement Au MaghrebCentre Jacques-Berque20239789920415019 Gana1766534BOOK9910898001103321Capitalismes Émergents Et Modèles De Développement Au Maghreb4211080UNINA03234nam 22005173a 450 991034684400332120250203235437.09783038975304303897530310.3390/books978-3-03897-530-4(CKB)4920000000095200(oapen)https://directory.doabooks.org/handle/20.500.12854/61249(ScCtBLL)15205426-582a-4e12-ad1b-9a177adaa9a0(OCoLC)1163850130(oapen)doab61249(EXLCZ)99492000000009520020250203i20192019 uu engurmn|---annantxtrdacontentcrdamediacrrdacarrierTransport of Fluids in Nanoporous MaterialsSuresh K. Bhatia, David Nicholson, Xuechao Gao, Guozhao JiMDPI - Multidisciplinary Digital Publishing Institute2019Basel, Switzerland :MDPI,2019.1 electronic resource (260 p.)9783038975298 303897529X Fluid transport in narrow pores is central to the design and optimization of nanoporous materials in industrial applications, such as catalysis, nanofluids, electrochemical batteries, and membrane separation. However, due to the strong potential field in nanopores, conventional models and methods have become inadequate for predicting the transport behavior of molecules confined in the pore space. In addition, the inherent complexity of the pore structure in nanomaterials requires consideration of local or nanoscale transport at the single pore level, and averaging over the macroscale, which further impedes the application and validation of the formulated mechanical models. To solve the problem of fluid transport in narrow nanopores beyond Knudsen limits, experimental characterizations should be combined to molecular simulations in order to probe the fluid movement under realistic conditions. This book provides comprehensive perspectives on the current research in the investigation of fluid transport processes in nanomaterials. The articles from leading scholars in this field are conveniently arranged according to three categories based on the approaches used in the papers: modeling and simulation, nanomaterial manipulation and characterization, and practical application. The 14 contributions not only demonstrate the importance of fluid behavior in different applications but also address the main theories and simulations to model the fluid transport behavior in nanoporous materials. This collection shows that "fluid transport in nanomaterials" remains a versatile and vibrant topic in terms of both theories and applications.Chemistrybicsscfluid transportpore channelmolecular dynamicsmembrane separationnanoporous materialChemistryBhatia Suresh K1786885Nicholson DavidGao XuechaoJi GuozhaoScCtBLLScCtBLLBOOK9910346844003321Transport of Fluids in Nanoporous Materials4319254UNINA