01849nam0 2200397 i 450 VAN0010315120240806100722.367N978-3-319-00596-620151026d2014 |0itac50 baengCH|||| |||||Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theoryXavier TolsaChamBirkhäuserSpringer2014XIII, 396 p.24 cm001VAN000293292001 Progress in mathematics210 Boston [etc.]Birkhäuser307VAN00240279Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory141015830-XXFunctions of a complex variable [MSC 2020]VANC020785MF31-XXPotential theory [MSC 2020]VANC019781MF42BxxHarmonic analysis in several variables [MSC 2020]VANC023080MFAnalytic capacityKW:KCauchy transformKW:KRectifiabilityKW:KVitushkin's conjectureKW:KCHChamVANL001889TolsaXavierVANV080493525093Birkhäuser <editore>VANV108193650Springer <editore>VANV108073650ITSOL20240906RICAhttp://dx.doi.org/10.1007/978-3-319-00596-6E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00103151BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4811 15EB 4811 20191107 Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory1410158UNICAMPANIA02332nam 2200505z- 450 991034683990332120210211(CKB)4920000000095241(oapen)https://directory.doabooks.org/handle/20.500.12854/50220(oapen)doab50220(EXLCZ)99492000000009524120202102d2019 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierInformation GeometryMDPI - Multidisciplinary Digital Publishing Institute20191 online resource (356 p.)3-03897-632-6 This Special Issue of the journal Entropy, titled "Information Geometry I", contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.?)(?Bezout matrixdecomposable divergencedually flat structureentropyFisher informationFisher information matrixinformation geometryinformation theoryMarkov random fieldsmatrix resultantmaximum pseudo-likelihood estimationstationary processStein equationSylvester matrixtensor Sylvester matrixVandermonde matrixVerdoolaege Geertauth1309762BOOK9910346839903321Information Geometry3029571UNINA