06811nam 2202137z- 450 991034666610332120231214133559.03-03921-063-7(CKB)4920000000095006(oapen)https://directory.doabooks.org/handle/20.500.12854/56353(EXLCZ)99492000000009500620202102d2019 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierPlant Proteomic Research 2.0MDPI - Multidisciplinary Digital Publishing Institute20191 electronic resource (594 p.)3-03921-062-9 Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.14-3-3 proteinstargeted two-dimensional electrophoresissomatic embryogenesisnitrogen metabolismsubtilaseSporisorium scitamineumnon-orthodox seedantioxidant activitysweet potato plants infected by SPFMVphotosynthesisB. acuminata petalschlorophyll deficiencyseed proteomicsimbibitionpollinationSarpo MiraqRT-PCRholm oaktuber phosphoproteomeisobaric tags for relative and absolute quantitation (iTRAQ)Quercus ilexnucleotide pyrophosphatase/phosphodiesteraselettuce?-subunitprotein phosphatasegerminationdrought stresspyruvate biosynthesisweakening of carbon metabolismdifferential proteinsheterotrimeric G proteinorganLC-MS-based proteomicspotato proteomicssmutgel-free/label-free proteomics? subunitshotgun proteomics2Dchloroplastproteome functional annotationPhalaenopsisClematis terniflora DC.wheatDn1-1carbon metabolismphysiological responsesZea maysphenylpropanoid biosynthesisISRmass spectrometric analysispatatinleafpea (Pisum sativum L.)maizeergosterolCamellia sinensisseed storage proteinssilver nanoparticleselevated CO2metacaspaseSPV2 and SPVGSnRK1MALDI-TOF/TOF(phospho)-proteomicsleaf spotrice isogenic linewheat leaf rustpathway analysisphosphoproteomesugarcanesenescenceOryza sativa L.Arabidopsis thalianaheat stressgene ontologyinnate immunityPseudomonas syringaeboltingchlorophyllsshootSimmondsia chinensisRT-qPCRstresses responsesSolanum tuberosumseedsGC-TOF-MSsucroseproteomePuccinia reconditacultivarZea mays L.secondary metabolismROSRicinus communis L.after-ripeningcadmiumStagonospora nodorumvirus induced gene silencingquantitative proteomicssweet potato plants non-infected by SPFMVaffinity chromatographypopulation variabilityGS3fungal perceptionammoniumtranscriptome profilingmass spectrometry analysispapain-like cysteine protease (PLCP)cold stressnitratelate blight diseaseearly and late disease stagesseed imbibitionlesion mimic mutantproteaseproteome mapseed dormancypetal2-DE proteomics2D DIGErootPhytophthora infestansdifferentially abundant proteins (DAPs)polyphenol oxidasedegradomeflavonoid14-3-3caspase-likeproteomicsRGG4co-infectionplasma membranechlorotic mutationMedicago sativaRGG3glycolysisbarley2-DEprotein phosphorylationwestern blottingN utilization efficiencyriceplant pathogenesis responseshigh temperaturedata-independent acquisitionpattern recognition receptorsvegetative storage proteinsleaf cell wall proteomeplant-derived smokeiTRAQstarchproteome profilingMorusKomatsu Setsukoauth1284061BOOK9910346666103321Plant Proteomic Research 2.03019248UNINA