03309nam 22007335 450 991030014820332120200630234137.03-319-06477-010.1007/978-3-319-06477-2(CKB)3710000000212189(DE-He213)978-3-319-06477-2(SSID)ssj0001296688(PQKBManifestationID)11768410(PQKBTitleCode)TC0001296688(PQKBWorkID)11353477(PQKB)10381034(MiAaPQ)EBC5586493(Au-PeEL)EBL5586493(OCoLC)884213329(PPN)179925415(EXLCZ)99371000000021218920140716d2014 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierFiniteness Properties of Arithmetic Groups Acting on Twin Buildings /by Stefan Witzel1st ed. 2014.Cham :Springer International Publishing :Imprint: Springer,2014.1 online resource (XVI, 113 p. 11 illus.) Lecture Notes in Mathematics,0075-8434 ;2109Bibliographic Level Mode of Issuance: Monograph3-319-06476-2 Basic Definitions and Properties -- Finiteness Properties of G(Fq[t]) -- Finiteness Properties of G(Fq[t; t-1]) -- Affine Kac-Moody Groups -- Adding Places.Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings.Lecture Notes in Mathematics,0075-8434 ;2109Group theoryGeometryManifolds (Mathematics)Complex manifoldsAlgebraic topologyGroup Theory and Generalizationshttps://scigraph.springernature.com/ontologies/product-market-codes/M11078Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21006Manifolds and Cell Complexes (incl. Diff.Topology)https://scigraph.springernature.com/ontologies/product-market-codes/M28027Algebraic Topologyhttps://scigraph.springernature.com/ontologies/product-market-codes/M28019Group theory.Geometry.Manifolds (Mathematics)Complex manifolds.Algebraic topology.Group Theory and Generalizations.Geometry.Manifolds and Cell Complexes (incl. Diff.Topology).Algebraic Topology.512.2Witzel Stefanauthttp://id.loc.gov/vocabulary/relators/aut718153MiAaPQMiAaPQMiAaPQBOOK9910300148203321Finiteness properties of arithmetic groups acting on twin buildings1392283UNINA