01021cam0 2200265 450 E60020003114720201216084143.020071105f1998 |||||ita|0103 baitaIT<<Le >>novantanove Torri delle Coste Salernitanei principi e le loro monetazioniLal lotta contro i SaraceniGeneroso IennacoLancusi di FiscianoSessa[1998?]227 p.ill.24 cmIennaco, GenerosoAF00005897070542605ITUNISOB20201216RICAUNISOBUNISOB90097800UNISOB90096545E600200031147M 102 Monografia moderna SBNM900003523Si97800donopregresso2UNISOBUNISOB20071105124607.020200828072740.0rovito900002070Si96545donopregresso1UNISOBUNISOB20070207094048.020200828072757.0rovitoNovantanove torri delle coste salernitane1686985UNISOB03067nam 22005895 450 991030010190332120250317122253.09789811306594981130659110.1007/978-981-13-0659-4(CKB)4100000005472070(DE-He213)978-981-13-0659-4(MiAaPQ)EBC6315174(PPN)229916759(EXLCZ)99410000000547207020180803d2018 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierUnderstanding Markov Chains Examples and Applications /by Nicolas Privault2nd ed. 2018.Singapore :Springer Nature Singapore :Imprint: Springer,2018.1 online resource (XVII, 372 p. 44 illus.) Springer Undergraduate Mathematics Series,2197-41449789811306587 9811306583 Probability Background -- Gambling Problems -- Random Walks -- Discrete-Time Markov Chains -- First Step Analysis -- Classification of States -- Long-Run Behavior of Markov Chains -- Branching Processes -- Continuous-Time Markov Chains -- Discrete-Time Martingales -- Spatial Poisson Processes -- Reliability Theory.This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.Springer Undergraduate Mathematics Series,2197-4144ProbabilitiesStatisticsStatisticsProbability TheoryStatistical Theory and MethodsStatistics in Engineering, Physics, Computer Science, Chemistry and Earth SciencesProbabilities.Statistics.Statistics.Probability Theory.Statistical Theory and Methods.Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.519.233Privault Nicolasauthttp://id.loc.gov/vocabulary/relators/aut475313MiAaPQMiAaPQMiAaPQBOOK9910300101903321Understanding Markov Chains1563914UNINA