01896nam 2200421 450 991079614860332120230807214850.02-335-06457-6(CKB)3790000000023522(EBL)2086675(MiAaPQ)EBC2086675(Au-PeEL)EBL2086675(OCoLC)914147997(EXLCZ)99379000000002352220200121d2015 uy 0freur|n|---|||||txtrdacontentcrdamediacrrdacarrierUn proverbe manqué scène à deux personnages /Marcel Nadaud[Place of publication not identified] :Ligaran,[2015]©20151 online resource (22 p.)Description based upon print version of record.Couverture; Page de Copyright; Page de titre; Un proverbe manqué Extrait : ""MONSIEUR, il regarde à sa montre : Il est tard, n'est-ce pas ? Oui, ce n'est pas ma faute : C'est ma femme. Chez nous la femme a la main haute. MADAME : Quand cela serait vrai, serait-ce bien le cas D'initier le monde à nos petits débats ? MONSIEUR : Non. MADAME : Nous sommes ici pour jouer un proverbe. MONSIEUR : Alors, dépêchons-nous. Ce salon est superbe ; Mais le théâtre, où donc est-il ? MADAME : Je n'en sais rien. MONSIEUR, au public : Ni vous. À la...""À PROPOS DES ÉDITIONS LIGARANLes éditions LIGARAN proposent des versions numériques de qualité de grands livres de la littéDrama19th centuryHistory and criticismDramaHistory and criticism.809.2Nadaud Marcel813418MiAaPQMiAaPQMiAaPQBOOK9910796148603321Un proverbe manqué3752170UNINA03550nam 22007695 450 991029999250332120220413185834.03-319-08690-110.1007/978-3-319-08690-3(CKB)3710000000202675(EBL)1783132(OCoLC)889312629(SSID)ssj0001296296(PQKBManifestationID)11735085(PQKBTitleCode)TC0001296296(PQKBWorkID)11347538(PQKB)11518936(MiAaPQ)EBC1783132(DE-He213)978-3-319-08690-3(PPN)179923978(EXLCZ)99371000000020267520140717d2014 u| 0engur|n|---|||||txtccrControl of nonholonomic systems: from sub-Riemannian geometry to motion planning /by Frédéric Jean1st ed. 2014.Cham :Springer International Publishing :Imprint: Springer,2014.1 online resource (112 p.)SpringerBriefs in Mathematics,2191-8198Description based upon print version of record.3-319-08689-8 Includes bibliographical references at the end of each chapters.1 Geometry of nonholonomic systems -- 2 First-order theory -- 3 Nonholonomic motion planning -- 4 Appendix A: Composition of flows of vector fields -- 5 Appendix B: The different systems of privileged coordinates.Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.SpringerBriefs in Mathematics,2191-8198System theoryGeometry, DifferentialArtificial intelligenceMathematicsComputer scienceSystems Theory, Controlhttps://scigraph.springernature.com/ontologies/product-market-codes/M13070Differential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Artificial Intelligencehttps://scigraph.springernature.com/ontologies/product-market-codes/I21000Mathematics, generalhttps://scigraph.springernature.com/ontologies/product-market-codes/M00009Computer Science, generalhttps://scigraph.springernature.com/ontologies/product-market-codes/I00001System theory.Geometry, Differential.Artificial intelligence.Mathematics.Computer science.Systems Theory, Control.Differential Geometry.Artificial Intelligence.Mathematics, general.Computer Science, general.514.74Jean Frédéricauthttp://id.loc.gov/vocabulary/relators/aut721265MiAaPQMiAaPQMiAaPQBOOK9910299992503321Control of nonholonomic systems1409850UNINA