01310nam0 2200349 450 00002696120120313113118.0978-88-7959-477-620091111d2009----km-y0itaa50------baitaITBiologiaEldra P. Solomon, Linda R. Berg, Diana W. Martinedizione italiana a cura di Paolo Audisio ... [et al.]5. edNapoliEdiSES20091 v. (paginazione varia)ill.28 cm.Tit. orig.: BiologyBiologia570(21. ed.)Scienze della vita. BiologiaSolomon,Eldra Pearl67333Berg,Linda R.67334Martin,Diana W.67335Audisio,PaoloITUniversità della Basilicata - B.I.A.RICAunimarc000026961Biology38764UNIBASFARMACIATTM3020091111BAS011524TTM3020120313BAS011131BAS01BAS01BOOKBASA2Polo Tecnico-ScientificoDIDDidatticaPTS.s1.p60.6109219T1092192009111198ConsultazioneBAS01BAS01BOOKBASA2Polo Tecnico-ScientificoDIDDidatticaPTS.s1.p60.6A110479T1104792012031304Prestabile Didattica00937nam0 22002411i 450 UON0021781220231205103401.53720030730d1927 |0itac50 bafreBE|||| |||||ˆLes ‰légendes hagiographiquespar Hippolyte Delehaye3. éd. revueBruxellesSociété des Bollandistes, 1927. 226, LII p.25 cm.001UON000656252001 Subsidia hagiographica18AGIOGRAFIA CRISTIANAUONC043112FIDELEHAYEHippolyteUONV042720162020ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00217812SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI BIZANTINO COLL SUB HAG 0018 SI SL 1636 5 0018 Légendes hagiographiques299062UNIOR05962nam 22007455 450 991029998810332120200630053427.03-319-02132-X10.1007/978-3-319-02132-4(CKB)3710000000125811(EBL)1782103(SSID)ssj0001275845(PQKBManifestationID)11746170(PQKBTitleCode)TC0001275845(PQKBWorkID)11255971(PQKB)10194895(MiAaPQ)EBC1782103(DE-He213)978-3-319-02132-4(PPN)179764977(EXLCZ)99371000000012581120140605d2014 u| 0engur|n|---|||||txtccrGeometric Control Theory and Sub-Riemannian Geometry /edited by Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti1st ed. 2014.Cham :Springer International Publishing :Imprint: Springer,2014.1 online resource (385 p.)Springer INdAM Series,2281-518X ;5Description based upon print version of record.1-322-13367-0 3-319-02131-1 Includes bibliographical references at the end of each chapters.1 A. A. Agrachev - Some open problems -- 2 D. Barilari, A. Lerario - Geometry of Maslov cycles -- 3 Y. Baryshnikov, B. Shapiro - How to Run a Centipede: a Topological Perspective -- 4 B. Bonnard, O. Cots, L. Jassionnesse - Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces -- 5 J-B. Caillau, C. Royer - On the injectivity and nonfocal domains of the ellipsoid of revolution -- 6 P. Cannarsa, R. Guglielmi - Null controllability in large time for the parabolic Grushin operator with singular potential -- 7 Y. Chitour, M. Godoy Molina, P. Kokkonen - The rolling problem: overview and challenges -- 8 A. A. Davydov, A. S. Platov - Optimal stationary exploitation of size-structured population with intra-specific competition -- 9 B. Doubrov, I. Zelenko - On geometry of affine control systems with one input -- 10 B. Franchi, V. Penso, R. Serapioni - Remarks on Lipschitz domains in Carnot groups -- 11 R. V. Gamkrelidze - Differential-geometric and invariance properties of the equations of Maximum Principle (MP) -- 12 N. Garofalo - Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces -- 13 R. Ghezzi, F. Jean - Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds -- 14 V. Jurdjevic - The Delauney-Dubins Problem -- 15 M. Karmanova, S. Vodopyanov - On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces -- 16 C. Li - On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principle G-bundle -- 17 I. Markina, S. Wojtowytsch - On the Alexandrov Topology of sub-Lorentzian Manifolds -- 18 R. Monti - The regularity problem for sub-Riemannian geodesics -- 19 L. Poggiolini, G. Stefani - A case study in strong optimality and structural stability of bang–singular extremals -- 20 A. Shirikyan - Approximate controllability of the viscous Burgers equation on the real line -- 21 M. Zhitomirskii - Homogeneous affine line fields and affine line fields in Lie algebras.This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.Springer INdAM Series,2281-518X ;5Calculus of variationsGlobal analysis (Mathematics)Manifolds (Mathematics)Geometry, DifferentialCalculus of Variations and Optimal Control; Optimizationhttps://scigraph.springernature.com/ontologies/product-market-codes/M26016Global Analysis and Analysis on Manifoldshttps://scigraph.springernature.com/ontologies/product-market-codes/M12082Differential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Calculus of variations.Global analysis (Mathematics)Manifolds (Mathematics)Geometry, Differential.Calculus of Variations and Optimal Control; Optimization.Global Analysis and Analysis on Manifolds.Differential Geometry.516.373Stefani Giannaedthttp://id.loc.gov/vocabulary/relators/edtBoscain Ugoedthttp://id.loc.gov/vocabulary/relators/edtGauthier Jean-Pauledthttp://id.loc.gov/vocabulary/relators/edtSarychev Andreyedthttp://id.loc.gov/vocabulary/relators/edtSigalotti Marioedthttp://id.loc.gov/vocabulary/relators/edtMiAaPQMiAaPQMiAaPQBOOK9910299988103321Geometric control theory and sub-Riemannian geometry1410204UNINA