03641nam 22006255 450 991029996790332120220415173735.03-319-05669-710.1007/978-3-319-05669-2(CKB)3710000000216621(EBL)1802946(SSID)ssj0001338770(PQKBManifestationID)11770403(PQKBTitleCode)TC0001338770(PQKBWorkID)11344725(PQKB)10964652(MiAaPQ)EBC1802946(DE-He213)978-3-319-05669-2(PPN)180621599(EXLCZ)99371000000021662120140806d2014 u| 0engur|n|---|||||txtccrLobachevsky geometry and modern nonlinear problems /by Andrey Popov1st ed. 2014.Cham :Springer International Publishing :Imprint: Birkhäuser,2014.1 online resource (315 p.)Description based upon print version of record.1-322-13460-X 3-319-05668-9 Includes bibliographical references and index.Introduction -- 1 Foundations of Lobachevsky geometry: axiomatics, models, images in Euclidean space -- 2 The problem of realizing the Lobachevsky geometry in Euclidean space -- 3 The sine-Gordon equation: its geometry and applications of current interest -- 4 Lobachevsky geometry and nonlinear equations of mathematical physics -- 5 Non-Euclidean phase spaces. Discrete nets on the Lobachevsky plane and numerical integration algorithms for Λ2-equations -- Bibliography -- Index.This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry.Geometry, AlgebraicDifferential equations, PartialMathematical physicsAlgebraic Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M11019Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Mathematical Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/M35000Geometry, Algebraic.Differential equations, Partial.Mathematical physics.Algebraic Geometry.Partial Differential Equations.Mathematical Physics.516.9Popov Andreyauthttp://id.loc.gov/vocabulary/relators/aut721624Iacob A.BOOK9910299967903321Lobachevsky geometry and modern nonlinear problems1410286UNINA