01100cam0-22003731i-450 99000373760040332120200506151142.00521631696000373760FED01000373760(Aleph)000373760FED0100037376020030910d1999----kmuy0itay50------baengGBy-------001yyAnalysis of panels and limited dependent variable modelsin honour of G. S. Maddalaedited by Cheng Hsiao, Lahiri Kajal ... [et al.]CambridgeCambridge University Press1999X, 338 p.24 cmEconomia matematicaPanelAnalisi330.01519520itaHsiao,ChengLahiri,KajalITUNINARICAUNIMARCBK990003737600403321C2-C5.818218DECTSXV I 342144DTEDTEDECTSAnalysis of panels and limited dependent variable models1128999UNINAGEN0103806nam 22005895 450 991029978020332120251116133845.01-4939-2181-910.1007/978-1-4939-2181-2(CKB)3710000000324982(SSID)ssj0001408281(PQKBManifestationID)11766018(PQKBTitleCode)TC0001408281(PQKBWorkID)11346384(PQKB)10923605(DE-He213)978-1-4939-2181-2(MiAaPQ)EBC6313115(MiAaPQ)EBC5576248(Au-PeEL)EBL5576248(OCoLC)899265028(PPN)183153197(EXLCZ)99371000000032498220141215d2015 u| 0engurnn#008mamaatxtccrIntroduction to Nonlinear Dispersive Equations /by Felipe Linares, Gustavo Ponce2nd ed. 2015.New York, NY :Springer New York :Imprint: Springer,2015.1 online resource (XIV, 301 p. 1 illus.)Universitext,0172-5939Bibliographic Level Mode of Issuance: Monograph1-4939-2180-0 1. The Fourier Transform -- 2. Interpolation of Operators -- 3. Sobolev Spaces and Pseudo-Differential Operators -- 4. The Linear Schrodinger Equation -- 5. The Non-Linear Schrodinger Equation -- 6. Asymptotic Behavior for NLS Equation -- 7. Korteweg-de Vries Equation -- 8. Asymptotic Behavior for k-gKdV Equations -- 9. Other Nonlinear Dispersive Models -- 10. General Quasilinear Schrodinger Equation -- Proof of Theorem 2.8 -- Proof of Lemma 4.2 -- References -- Index.This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.Universitext,0172-5939Differential equations, PartialPartial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Differential equations, Partial.Partial Differential Equations.515.353Linares Felipeauthttp://id.loc.gov/vocabulary/relators/aut505907Ponce Gustavoauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910299780203321Introduction to Nonlinear Dispersive Equations2503201UNINA