00970nam0-22003491i-450-99000144868040332120090803115744.01-56592-005-8000144868FED01000144868(Aleph)000144868FED0100014486820001205d1992----km-y0itay50------baengUSa---a---001yyUnderstanding DCEWard Rosenberry, David Kenney, Gerry FisherSebastopol [Ca.]O'Reillyc1992xxv, 238 p.ill.23 cmProgrammiApplicazioni distribuiteBasi di dati005.713Rosenberry,Ward62876Fisher,Gerry62877Kenney,Ward351350ITUNINARICAUNIMARCBK990001448680403321005.713-ROS-1575SC1SC1Understanding DCE374316UNINA01541nam0 22003731i 450 UON0028562520231205103859.18901-981173-8-820061218f2000 |0itac50 baengGB|||| 1||||Seven metaphysical poetsa structural study of the unchanging selfRobert EllrodtOxfordOxford University Pressc2000rist. 2002x, 369 p.23 cm.DONNE JOHNCriticaUONC042396FIPOETI INGLESI1500-1700StudiUONC062175FICRASHAW RICHARDCriticaUONC062187FIHERBERT GEORGECriticaUONC062188FIHERBERT OF CHERBURY EDWARDCriticaUONC062189FIMARVELL ANDREWCriticaUONC062190FITRAHERNE, THOMASCriticaUONC062191FIVAUGHAN HENRYCriticaUONC062193FIPOESIA INGLESE1500-1700StudiUONC081240FIGBOxfordUONL000029821.3Poesia inglese. 1558-162521ELLRODTRobertUONV166699166631Oxford University PressUONV245947650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00285625SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI Angl VII 0107 SI LO 70072 5 0107 Seven metaphysical poets1248912UNIOR04077nam 22007455 450 991029977810332120200701125602.03-319-11478-610.1007/978-3-319-11478-1(CKB)3710000000360266(EBL)1973832(SSID)ssj0001452217(PQKBManifestationID)11834525(PQKBTitleCode)TC0001452217(PQKBWorkID)11479087(PQKB)10202038(DE-He213)978-3-319-11478-1(MiAaPQ)EBC5595352(MiAaPQ)EBC1973832(Au-PeEL)EBL1973832(OCoLC)903048339(PPN)184498090(EXLCZ)99371000000036026620150205d2015 u| 0engur|n|---|||||txtccrAn Invitation to General Algebra and Universal Constructions /by George M. Bergman2nd ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (574 p.)Universitext,0172-5939Description based upon print version of record.3-319-11477-8 Includes bibliographical references and index.1 About the course, and these notes -- Part I: Motivation and Examples -- 2 Making Some Things Precise -- 3 Free Groups -- 4 A Cook's Tour -- Part II: Basic Tools and Concepts -- 5 Ordered Sets, Induction, and the Axiom of Choice -- 6 Lattices, Closure Operators, and Galois Connections -- 7 Categories and Functors -- 8 Universal Constructions -- 9 Varieties of Algebras -- Part III: More on Adjunctions -- 10 Algebras, Coalgebras, and Adjunctions -- References -- List of Exercises -- Symbol Index -- Word and Phrase Index.Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.Universitext,0172-5939AlgebraCategories (Mathematics)Algebra, HomologicalAssociative ringsRings (Algebra)General Algebraic Systemshttps://scigraph.springernature.com/ontologies/product-market-codes/M1106XCategory Theory, Homological Algebrahttps://scigraph.springernature.com/ontologies/product-market-codes/M11035Associative Rings and Algebrashttps://scigraph.springernature.com/ontologies/product-market-codes/M11027Algebra.Categories (Mathematics)Algebra, Homological.Associative rings.Rings (Algebra)General Algebraic Systems.Category Theory, Homological Algebra.Associative Rings and Algebras.512.9Bergman George Mauthttp://id.loc.gov/vocabulary/relators/aut61852MiAaPQMiAaPQMiAaPQBOOK9910299778103321Invitation to general algebra and universal constructions1522508UNINA