00892nlm2 22002771 n450 99644485070331620211119091111.020721213e19731929 uy 0engUKdrcnu<<Vol. 2.:>>by the late F. W. Hasluckedited by Margaret M. HasluckOxfordat the Clarendon press1929Testo elettronico (PDF) (IX, 365 -877 p.)Base dati testuale001996444850603316Christianity and Islam under the sultansCristianesimoRapporti [con l'] IslamismoTurchiaBNCF297.1972HASLUCK,Frederick William1878-19201021764HASLUCK,Margaret Masson Hardie1885-1948cbaITcbaREICAT996444850703316EBERVol. 2.:2425558UNISA00982nam0-2200349---450 99000560648020331620220715124950.0000560648USA01000560648(ALEPH)000560648USA0100056064819981214r1962----|||y0itaa50------baengcn0 00|||<<A >> survey of mathematical logicWang HaoPekingScience Press1962X, 651 p.25 cm.Logica matematicaFPEKING511.3WANG,Hao7177ITSA20111219990005606480203316Dipar.to di Filosofia - SalernoDFF.V. WAN (685)2178 FILXV.17. 563 (F.V. WAN) (685)2178 FILXV.17451007BKFVER20121027USA01152520121027USA011614Survey of mathematical logic436943UNISA03848nam 22007215 450 991029976390332120220610151428.03-0348-0408-310.1007/978-3-0348-0408-0(CKB)3710000000404002(SSID)ssj0001501509(PQKBManifestationID)11830604(PQKBTitleCode)TC0001501509(PQKBWorkID)11446917(PQKB)10054099(DE-He213)978-3-0348-0408-0(MiAaPQ)EBC6315852(MiAaPQ)EBC5586847(Au-PeEL)EBL5586847(OCoLC)1026468378(PPN)185489575(EXLCZ)99371000000040400220150428d2015 u| 0engurnn#008mamaatxtccrHarmonic and Geometric Analysis /by Giovanna Citti, Loukas Grafakos, Carlos Pérez, Alessandro Sarti, Xiao Zhong1st ed. 2015.Basel :Springer Basel :Imprint: Birkhäuser,2015.1 online resource (IX, 170 p. 19 illus., 12 illus. in color.)Advanced Courses in Mathematics - CRM Barcelona,2297-0304Bibliographic Level Mode of Issuance: Monograph3-0348-0407-5 Includes bibliographical references and index.1 Models of the Visual Cortex in Lie Groups -- 2 Multilinear Calderón–Zygmund Singular Integrals -- 3 Singular Integrals and Weights -- 4 De Giorgi–Nash–Moser Theory.This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differential equations in divergence form.Advanced Courses in Mathematics - CRM Barcelona,2297-0304Mathematical analysisAnalysis (Mathematics)Differential equations, PartialAnalysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12007Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Mathematical analysis.Analysis (Mathematics).Differential equations, Partial.Analysis.Partial Differential Equations.515515Citti Giovannaauthttp://id.loc.gov/vocabulary/relators/aut1062111Pérez C1232576Grafakos Loukasauthttp://id.loc.gov/vocabulary/relators/autSarti Alessandroauthttp://id.loc.gov/vocabulary/relators/autZhong Xiaoauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910299763903321Harmonic and Geometric Analysis2861958UNINA