05124nam 22006973 450 991029703950332120230914204937.03-631-75452-310.3726/b13971(CKB)4100000007277002(OAPEN)1003224(oapen)https://directory.doabooks.org/handle/20.500.12854/37317(MiAaPQ)EBC30686084(Au-PeEL)EBL30686084(EXLCZ)99410000000727700220230911d2007 uy 0enguuuuu---auuuutxtrdacontentcrdamediacrrdacarrierProduct Recommendations in e-Commerce Retailing ApplicationsFirst edition.Frankfurt am Main :Peter Lang GmbH, Internationaler Verlag der Wissenschaften,2007.©2008.1 online resource (222 pages)Forschungsergebnisse der Wirtschaftsuniversitaet Wien.3-631-56622-0 Cover -- 1 Introduction -- 1.1 Research Goal -- 1.2 Contents and Organization -- 2 Recommender Systems - Definition, Classification, and Marketing Perspectives -- 2.1 Working Definitions -- 2.2 Classification -- 2.3 Application Models of Recommender Systems -- 2.3.1 Broad Recommendation Lists -- 2.3.2 Customer Comments and Ratings -- 2.3.3 Notification Services -- 2.3.4 Product Associated Recommendations -- 2.3.5 Persistent Personalization -- 2.4 The Consumer Decision Process -- 2.4.1 Need Recognition -- 2.4.2 Information Search -- 2.4.3 Pre-Purchase Evaluation of Alternatives -- 2.4.4 Purchase -- 2.4.5 Post-Purchase Processes -- 2.5 Virtual Communities -- 2.5.1 Characteristics and Benefits -- 2.5.2 Virtual Communities and Network Effects -- 2.5.3 Community Building -- 3 Recommender Systems - Functional Perspectives -- 3.1 Input Data of Recommender Systems -- 3.2 Output Data of Recommender Systems -- 3.3 Measurement Scales for Preference Elicitation -- 3.4 Information Delivery -- 3.5 Recommendation Methods -- 3.5.1 Non-Personalized Recommendation Methods -- 3.5.2 Personalized Recommendation Methods -- 3.5.2.1 Synopsis of Information Filtering Methods -- 3.5.2.2 Human Approaches towards Information Filtering -- 3.5.2.3 Collaborative Filtering -- 3.5.2.4 Attribute-Based Filtering -- 3.5.2.5 Rules-Based Filtering -- 4 Research Model, Hypotheses, and Methodology -- 4.1 Problem Statement -- 4.2 Research Questions and Model -- 4.3 Methodology and Research Design -- 5 Results -- 5.1 Descriptive Results -- 5.1.1 Sample Size and Demographic Data -- 5.1.2 Internet Usage -- 5.1.3 Online Shopping -- 5.1.4 Online Product Recommendations -- 5.1.5 Ratings and Comments -- 5.2 Verification of the Research Model -- 5.2.1 Exploratory Factor Analysis -- 5.2.2 Psychographic Hypotheses - Structural Equation Model -- 5.2.3 Psychographic Hypotheses - Regression Model.5.2.4 Sociodemographic Hypotheses -- 6 Summary and Directions for Further Research -- 6.1 Main Findings -- 6.2 Limitations and Directions for Further Research -- Bibliography -- Appendices -- A AMOS Output -- A.1 Survey AUM -- A.2 Survey AON.The book deals with product recommendations generated by information systems referred to as recommender systems. Recommender systems assist consumers in making product choices by providing recommendations of the range of products and services offered in an online purchase environment. The quantitative research study investigates the influence of psychographic and sociodemographic determinants on the interest of consumers in personalized online book recommendations. The author presents new findings regarding the interest in recommendations, importance of product reviews for the decision process, motives for submitting ratings as well as comments, and the delivery of recommendations. The results show that opinion seeking, opinion leading, domain specific innovativeness, online shopping experience, and age are important factors in respect of the interest in personalized recommendations.Forschungsergebnisse der Wirtschaftsuniversität Wien.Distribution (Economic theory)ManagementWarehousesManagementMarketing researchApplicationsBuchhandelCommerceElectronic CommerceEmpfehlungssystemEntscheidungsprozessKnotzerKonsumentenstudieProductProduktempfehlungRecommendationsRetailingVerbraucherverhaltenVirtuelle GemeinschaftDistribution (Economic theory)Management.WarehousesManagement.Marketing research.658.8/72Knotzer Nicolas913826MiAaPQMiAaPQMiAaPQBOOK9910297039503321Product Recommendations in E-Commerce Retailing Applications2047473UNINA