02531 am 2200517 n 450 9910279597203321201804112-35596-031-32-296-30332-310.4000/books.irasec.1366(CKB)3230000000221737(FrMaCLE)OB-irasec-1366(oapen)https://directory.doabooks.org/handle/20.500.12854/55850(PPN)230000533(EXLCZ)99323000000022173720180703j|||||||| ||| 0freuu||||||m||||txtrdacontentcrdamediacrrdacarrierPavillon noir sur l’Asie du Sud-Est Histoire d’une résurgence de la piraterie maritime /Éric FréconBangkok Institut de recherche sur l’Asie du Sud-Est contemporaine20181 online resource (294 p.) 2-7475-3287-9 Anachronisme ou résurgence d'une pratique que l'on croyait oubliée ? En Asie du Sud-Est, la piraterie maritime est en tout cas qualifiée de « nouvelle menace ». Mais d'où viennent ces hommes qui font trembler les marins des détroits par lesquels circule l'essentiel du commerce maritime mondial ? Et comment l'Indonésie, la Malaysia, Singapour, la Thaïlande, les Philippines ou le Vietnam s'emploient-ils à lutter contre ces avatars contemporains des pavillons noirs de jadis ? Les États sont-ils prêts à renoncer pour partie à leur souveraineté afin de s'ouvrir à des solutions collectives pour assurer la sécurité de leurs eaux ? Quel rôle jouent les grandes puissances comme le Japon, la Chine, l'Inde ou encore les États-Unis et la France qui, à plus d'un titre, sont concernées par le problème ? Ce livre s'efforce de répondre à toutes ces questions en s'interrogeant sur les limites de l'ordre juridique international.Pavillon noir sur l’Asie du Sud-Est PiratesSoutheast AsiaHistoryMalay archipelagoSouth China SeaeconomicsSoutheast AsiasecuritypiracyMalaysiaorganized crimetrafictraffickingPiratesHistory.Frécon Éric953383Domenach Jean-Luc173537FR-FrMaCLEBOOK9910279597203321Pavillon noir sur l’Asie du Sud-Est3039740UNINA11833nam 22006133 450 991101941310332120250512230617.09781119874003111987400997811198740271119874025(CKB)31073593600041(MiAaPQ)EBC31227218(Au-PeEL)EBL31227218(Exl-AI)31227218(OCoLC)1428258160(Perlego)4367266(EXLCZ)993107359360004120240328d2024 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierMXenes Fundamentals and Applications1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (385 pages)9781119873990 1119873991 Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes.4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials.7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations.10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy.14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction.18.2 Progressive Approach Towards MXene Composites and Hybrids.This book offers a comprehensive exploration of MXenes, a class of two-dimensional materials composed of transition metal carbides, nitrides, or carbonitrides. The book is edited by experts from various esteemed institutions and includes contributions from numerous researchers worldwide. It covers the fundamental properties, synthesis methods, and potential applications of MXenes in multiple fields, such as energy storage, biomedicine, environmental science, and electronics. The book is designed for researchers, scientists, and professionals in material science and related disciplines, aiming to advance their understanding of the unique characteristics and technological potentials of MXenes. It serves as a valuable reference for both academic study and practical application development.Generated by AI.MXenesGenerated by AITwo-dimensional materialsGenerated by AIMXenesTwo-dimensional materials546.6Singh Jay1752693Singh Kshitij R. B1859226Pratap Singh Ravindra1818119Adetunji Charles Oluwaseun1838621MiAaPQMiAaPQMiAaPQBOOK9911019413103321MXenes4462808UNINA03832nam 22006015 450 991073484210332120251230064134.03-030-13535-710.1007/978-3-030-13535-5(CKB)4100000007702110(MiAaPQ)EBC5720247(DE-He213)978-3-030-13535-5(PPN)235005266(EXLCZ)99410000000770211020190225d2019 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAdvances in Production, Logistics and Traffic Proceedings of the 4th Interdisciplinary Conference on Production Logistics and Traffic 2019 /edited by Uwe Clausen, Sven Langkau, Felix Kreuz1st ed. 2019.Cham :Springer International Publishing :Imprint: Springer,2019.1 online resource (320 pages)Lecture Notes in Logistics,2194-89253-030-13534-9 The series of Interdisciplinary Conferences on Production, Logistics and Traffic (ICPLT) address the research community as well as practitioners in these fields with special attention to links and interfaces between the three disciplines. The fourth ICPLT in particular deals with technology from intralogistics to automated trucking driving as well as the societal aspects of commercial transport. To contribute to a high-level and beneficial exchange between authorities in politics and municipalities with researchers and practitioners in production and logistics management the ICPLT has asked for contributions from the three disciplines to better understand innovative technologies, best practises and latest results. These contributions have been evaluated and selected based on a double-blind review process to become part of this book. It comprises 21 contributions examining trends and challenges for commercial transport as the essential link for production, logistics and society. Therefore, innovative technologies and strategies are presented and discussed to better understand the interdependencies, conflicts of interest and to develop feasible solutions. Topics · Simulation & Optimization in Production and Logistics · Freight Transport Demand Modelling · Intralogistics & Logistics Facilities · Policy & Human Factors · Production & Maintenance · Supply Chain Management · Sustainable Logistics & Energy Target Groups · Representatives of public authorities, municipalities & politics · Actors of sectoral, transport & spatial planning · Actors of production & logistics · Researchers in the disciplines production, logistics, transport & spatial planning .Lecture Notes in Logistics,2194-8925Industrial ManagementBusiness logisticsTransportation engineeringTraffic engineeringIndustrial ManagementLogisticsTransportation Technology and Traffic EngineeringSupply Chain ManagementIndustrial Management.Business logistics.Transportation engineering.Traffic engineering.Industrial Management.Logistics.Transportation Technology and Traffic Engineering.Supply Chain Management.355.411658.5Clausen Uweedthttp://id.loc.gov/vocabulary/relators/edtLangkau Svenedthttp://id.loc.gov/vocabulary/relators/edtKreuz Felixedthttp://id.loc.gov/vocabulary/relators/edtBOOK9910734842103321Advances in Production, Logistics and Traffic3404906UNINA