01063nam0-2200289 --450 991026815790332120180517113858.0978-88-495-3367-520180517d2017----kmuy0itay5050 baitaIT 001yy<<La >>responsabilità per la gestione nelle società di personeFrancesca VessiaNapoliEdizioni scientifiche italiane2017IX, 468 p.24 cmPubblicazioni del Dipartimento di giurisprudenzaUniversità degli studi di Bari Aldo Moro167In testa al frontespizio: Università degli studi di Bari Aldo MoroSocietà di personeAmministratoriResponsabilitàLegislazioneItalia346.45068223itaVessia,Francesca749987ITUNINAREICATUNIMARCBK991026815790332113 CB 1099CP 458DDCPDDCPResponsabilità per la gestione nelle società di persone1509370UNINA05446nam 2200685Ia 450 991014331110332120170815113046.01-280-74844-397866107484400-470-76250-00-470-98864-91-4051-7209-6(CKB)1000000000341876(EBL)284303(OCoLC)437176176(SSID)ssj0000130134(PQKBManifestationID)11134192(PQKBTitleCode)TC0000130134(PQKBWorkID)10080750(PQKB)10889991(MiAaPQ)EBC284303(EXLCZ)99100000000034187620050721d2006 uy 0engur|n|---|||||txtccrControl of primary metabolism in plants[electronic resource] /edited by William C. Plaxton and Michael T. McManusAmes, Iowa Blackwell Pub.c20061 online resource (412 p.)Annual Plant ReviewsDescription based upon print version of record.1-4051-3096-2 Includes bibliographical references and index.Control of Primary Metabolism in Plants; Contents; Contributors; Preface; 1 Evaluation of the transcriptome and genome to inform the study of metabolic control in plants; 1.1 Introduction; 1.2 Transcript profiling technologies; 1.3 Transcript profiling workflow; 1.3.1 Data generation; 1.3.2 Data management; 1.3.3 Data processing; 1.3.3.1 Raw data handling; 1.3.3.2 Normalisation; 1.3.4 Data analysis; 1.3.4.1 Differential expression; 1.3.4.2 Data mining; 1.3.4.3 Functional categorisation; 1.3.5 Data visualisation; 1.4 What can we learn from transcript profiles performed in a starchless mutant?1.5 Conclusion/perspectivesAcknowledgements; References; 2 The use of proteomics in the study of metabolic control; 2.1 Introduction; 2.2 Proteomic methodologies; 2.2.1 Extraction of proteins from plant tissue; 2.2.2 Separation, display and quantification of proteins; 2.2.3 Identification of proteins by mass spectrometry; 2.2.4 Gel-free proteomic approaches; 2.3 Cataloging protein localization; 2.3.1 Localizing proteins to different tissues; 2.3.2 Establishing subcellular protein localization: methodologies; 2.3.3 Mitochondrial and chloroplast proteomes; 2.3.4 Other subcellular proteomes2.3.5 A stamp of authenticity for the subcellular protein postcode?2.4 Quantitative analyses of the proteome; 2.4.1 Examples of quantitative proteomics; 2.4.2 The use of high-throughput measurements of enzyme activity as a proxy for quantitative proteomics; 2.5 The use of proteomics to investigate post-translational modification of proteins; 2.5.1 Systematic identification of phosphorylated proteins; 2.5.2 Systematic identification of protein redox modifications; 2.6 The use of proteomics to investigate protein-protein interactions; 2.7 Future perspectives; References3 Study of metabolic control in plants by metabolomics3.1 Introduction; 3.1.1 What is metabolomics?; 3.1.2 Systemic properties in metabolic networks; 3.2 Metabolomic methods; 3.2.1 Historic perspective of plant metabolite analysis; 3.2.2 Modern instrumentation in metabolite analysis; 3.2.3 Sample preparation for metabolomics; 3.2.4 Metabolome coverage; 3.2.4.1 The quest for combining sensitivity and selectivity; 3.2.4.2 Cellular and subcellular metabolomics; 3.2.4.3 Compound identification; 3.2.5 Quality control; 3.3 Metabolomic databases3.4 Pathways, clusters and networks: applications of plant metabolomics3.4.1 Bioengineering of metabolism; 3.4.2 Plant biochemistry; 3.4.2.1 Pathway analysis; 3.4.2.2 Flux measurements; 3.4.3 Physiological studies; 3.4.4 Plant metabolomic methods; 3.4.5 Food science; 3.5 Outlook; References; 4 Metabolite transporters in the control of plant primary metabolism; 4.1 Introduction; 4.2 Photoassimilation and assimilate transport in source cells; 4.2.1 Carbon assimilation by the reductive pentose-phosphate pathway (Calvin cycle); 4.2.2 The plastidic triose-phosphate pool - a metabolic crossway4.2.2.1 Communication between the starch and sucrose biosynthetic pathways via TPTThe ability to control the rates of metabolic processes in response to changes in the internal or external environment is an indispensable attribute of living cells that must have arisen with life's origin. This adaptability is necessary for conserving the stability of the intracellular environment which is, in turn, essential for maintaining an efficient functional state. The advent of genomics, proteomics, and metabolomics has revolutionised the study of plant development and is now having a significant impact on the study of plant metabolism and its control. In the last few years, significaAnnual Plant ReviewsPlantsMetabolismBotanyElectronic books.PlantsMetabolism.Botany.572.42572/.42580.5Plaxton William C977317McManus Michael T857008MiAaPQMiAaPQMiAaPQBOOK9910143311103321Control of primary metabolism in plants2226362UNINA00935nam a2200253 i 450099100210683970753620020503161203.0010315s1986 it ||| | ita b10317491-39ule_instEXGIL97561ExLBiblioteca Interfacoltàita741.5945Chiappori, Alfredo262680I cattivi /Alfredo Chiappori ; presentazione e introduzione ai capitoli di Oreste del BuonoMilano :Mondadori,c1986111 p. :in gran parte ill. ;19 cm.Suppl. a: Panorama, n.1034 (9/2/1986)Del Buono, Oreste.b1031749102-04-1427-06-02991002106839707536LE002 Busta 89 212002000903242le002-E0.00-l- 00000.i1037452827-06-02Cattivi200778UNISALENTOle00201-01-01ma -itait 21