01151nam a2200277 i 450099100171189970753620020503152749.0010104s1985 it ||| | ita b10262155-39ule_instEXGIL90229ExLBiblioteca Interfacoltàita945.813Raciti Romeo, Vincenzo465493Aci nel secolo 16. :notizie storiche e documenti /Vincenzo Raciti Romeo ; presentazione di Cristoforo Cosentini ; introduzione di Matteo DonatoRist. anastAcireale :[s.n.],1985480 p., [4] c. di tav. :ill. ;23 cm.In testa al front.: Accademia di scienze lettere e belle arti degli Zelanti e dei Dafnici, AcirealeRipr. facs. dell'ed.: Acireale, 1896-1898Donato, Matteo.b1026215502-04-1427-06-02991001711899707536LE002 St. XXII A 1512002000720535le002-E0.00-l- 00000.i1031269927-06-02Aci nel secolo 16.211428UNISALENTOle00201-01-01ma -itait 0104857nam 22006975 450 991025483590332120251113174439.03-319-59186-X10.1007/978-3-319-59186-5(CKB)4340000000223229(DE-He213)978-3-319-59186-5(MiAaPQ)EBC5164444(PPN)221253246(EXLCZ)99434000000022322920171128d2017 u| 0engurnn#008mamaatxtrdacontentcrdamediacrrdacarrierBig Data Factories Collaborative Approaches /edited by Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins1st ed. 2017.Cham :Springer International Publishing :Imprint: Springer,2017.1 online resource (VI, 141 p. 18 illus., 14 illus. in color.)Computational Social Sciences,2509-95823-319-59185-1 Includes bibliographical references at the end of each chapters and index.Chapter1. Introduction -- Part 1: Theoretical Principles and Approaches to Data Factories --  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration -- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science -- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches -- Chapter4. Levels of Trace Data for Social and Behavioral Science Research -- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations -- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures -- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs -- Chapter7. Lessons learned from a decade of FLOSS data collection -- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations -- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes.The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.Computational Social Sciences,2509-9582Data miningQuantitative researchBioinformaticsSocial sciencesData processingScienceMoral and ethical aspectsData Mining and Knowledge DiscoveryData Analysis and Big DataBioinformaticsComputer Application in Social and Behavioral SciencesScience EthicsData mining.Quantitative research.Bioinformatics.Social sciencesData processing.ScienceMoral and ethical aspects.Data Mining and Knowledge Discovery.Data Analysis and Big Data.Bioinformatics.Computer Application in Social and Behavioral Sciences.Science Ethics.005.7Matei Sorin Adamedthttp://id.loc.gov/vocabulary/relators/edtJullien Nicolasedthttp://id.loc.gov/vocabulary/relators/edtGoggins Sean Pedthttp://id.loc.gov/vocabulary/relators/edtMiAaPQMiAaPQMiAaPQBOOK9910254835903321Big Data Factories2545046UNINA