01381nam 2200325Ia 450 99639069610331620200824132743.0(CKB)1000000000655008(EEBO)2240870281(OCoLC)ocm31355054e(OCoLC)31355054(EXLCZ)99100000000065500819941025d1650 uy |engurbn||||a|bb|Declaration du Parlement d'Angleterre touchant la marche de son armée en Escosse[electronic resource] /traduite de l'original Anglois par ordre du Conseil d'EstatLondres Par Guillaume Du-Gardl'an 1650[2], 21 pSecond part has special t.p. and continuous paging, with title: Declaration du Parlement d'Angleterre touchant les efforts qu'il a faits depuis peu, pour oster toute sorte de mal-entendus & de differens entre la reÌpublique d'Angleterre & le royame d'Escosse.Reproduction of original in the Library of Congress.eebo-0078Great BritainHistoryCommonwealth and Protectorate, 1649-1660ScotlandHistory1649-1660EAHEAHWaOLNBOOK996390696103316Declaration du Parlement d'Angleterre touchant la marche de son armée en Escosse2368353UNISA03574nam 22006135 450 991025459770332120200704041517.03-319-44491-310.1007/978-3-319-44491-8(CKB)3710000000909124(DE-He213)978-3-319-44491-8(MiAaPQ)EBC6310460(MiAaPQ)EBC5588373(Au-PeEL)EBL5588373(OCoLC)960321749(PPN)196322758(EXLCZ)99371000000090912420161001d2017 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierAnalytical Mechanics /by Carl S. Helrich1st ed. 2017.Cham :Springer International Publishing :Imprint: Springer,2017.1 online resource (XV, 349 p. 58 illus.) Undergraduate Lecture Notes in Physics,2192-47913-319-44490-5 Includes bibliographical references and index.History -- Lagrangian Mechanics -- Hamiltonian Mechanics -- Solid Bodies -- Hamilton-Jacobi Approach -- Complex Systems -- Chaos in Dynamical Systems -- Special Relativity -- Appendices -- Differential of S -- Hamilton-Jacobi Equation -- With Variables p, q, q -- Zero-Component Lemma -- Maxwell Equations from Field Strength Tensor -- Differential Operators -- Answers to Selected Exercises. .This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics. .Undergraduate Lecture Notes in Physics,2192-4791MechanicsPhysicsMechanics, AppliedClassical Mechanicshttps://scigraph.springernature.com/ontologies/product-market-codes/P21018Mathematical Methods in Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19013Theoretical and Applied Mechanicshttps://scigraph.springernature.com/ontologies/product-market-codes/T15001Mechanics.Physics.Mechanics, Applied.Classical Mechanics.Mathematical Methods in Physics.Theoretical and Applied Mechanics.531.01515Helrich Carl Sauthttp://id.loc.gov/vocabulary/relators/aut749354MiAaPQMiAaPQMiAaPQBOOK9910254597703321Analytical mechanics1508749UNINA