01267nlm 2200325 a 450 99643575360331620210903123708.00-520-20515-419990210d1993---- uy 0engUSdrcnu<<The>> calligraphic statetextual domination and history in a Muslim societyBrinkley MessickBerkeley, Calif.LondonUniversity of California Press1993Testo elettronico (PDF) (XII, 341 p. : ill.)Comparative studies on Muslim societies16Comparative studies on Muslim societies, 16Base dati testualeIn questa innovativa combinazione di antropologia, storia e teoria postmoderna, Brinkley Messick esamina il mutevole rapporto tra scrittura e autorità in una società musulmana dalla fine del XIX secolo a oggi.Comparative studies on Muslim societies16.IslamismoYemenBNCF297.1975MESSICK,Brinkley Morris835388American Council of Learned Societies.cbaITcbaREICAT996435753603316EBERCalligraphic state1867031UNISA02057nam2 2200373 i 450 VAN007253620110405101046.50420091110d1968 |0itac50 baengLATGB|||| |||||ˆ2: ‰Res Rustica 5.-9.Lucius Junius Moderatus Columellawith a recension of the text and an english translation by E. S. Forster and Edward H. HeffnerLondon : HeinemannCambridge : Harvard university, 1968XI503 p. ; 16 cmTesto latino a fronte.001VAN00346992001 ˆThe ‰Loeb classical library210 LondonHeinemannNew YorkPutnams[poi] Cambridge (Mass.)Harvard universityLondonHeinemann.407001VAN00725032001 On agricultureLucius Junius Moderatus Columella205 London : HeinemannCambridge : Harvard university210 v. ; 17 cm215 Testo latino a fronte.2GBLondonVANL000015ColumellaLucius Iunius ModeratusVANV05794771617ForsterEdward S.VANV056125HeffnerEdward H.VANV057972Heinemann <editore>VANV109357650Forster, Edward SeymourForster, Edward S.VANV056540Forster, E.S.Forster, Edward S.VANV062065Forster, E. S.Forster, Edward S.VANV062066Heffner, E. H.Heffner, Edward H.VANV063371ITSOL20231124RICABIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZAIT-CE0105VAN00BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALIIT-CE0103VAN07VAN0072536BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI07CONS Xe 4 Col 07 412 20091110 BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA00CONS XVIII.P.15 2 00 3520 20120718 Res Rustica 5.-91435656UNICAMPANIA03578nam 22006015 450 991025428110332120220415170508.0981-10-4091-510.1007/978-981-10-4091-7(CKB)3710000001127304(DE-He213)978-981-10-4091-7(MiAaPQ)EBC4832545(PPN)199764735(EXLCZ)99371000000112730420170328d2017 u| 0engurnn#008mamaatxtrdacontentcrdamediacrrdacarrierSurface-knots in 4-space an introduction /by Seiichi Kamada1st ed. 2017.Singapore :Springer Singapore :Imprint: Springer,2017.1 online resource (XI, 212 p. 146 illus.)Springer Monographs in Mathematics,1439-7382981-10-4090-7 Includes bibliographical references and index.1 Surface-knots -- 2 Knots -- 3 Motion pictures -- 4 Surface diagrams -- 5 Handle surgery and ribbon surface-knots -- 6 Spinning construction -- 7 Knot concordance -- 8 Quandles -- 9 Quandle homology groups and invariants -- 10 2-Dimensional braids -- Bibliography -- Epilogue -- Index.This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field. Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval. Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.Springer Monographs in Mathematics,1439-7382GeometryAlgebraic topologyManifolds (Mathematics)Complex manifoldsGeometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21006Algebraic Topologyhttps://scigraph.springernature.com/ontologies/product-market-codes/M28019Manifolds and Cell Complexes (incl. Diff.Topology)https://scigraph.springernature.com/ontologies/product-market-codes/M28027Geometry.Algebraic topology.Manifolds (Mathematics)Complex manifolds.Geometry.Algebraic Topology.Manifolds and Cell Complexes (incl. Diff.Topology).514.224Kamada Seiichiauthttp://id.loc.gov/vocabulary/relators/aut734235MiAaPQMiAaPQMiAaPQBOOK9910254281103321Surface-Knots in 4-Space1562239UNINA