04147nam 22006015 450 991025409840332120220404180514.03-319-33255-410.1007/978-3-319-33255-0(CKB)3710000000734709(EBL)4573806(DE-He213)978-3-319-33255-0(MiAaPQ)EBC4573806(PPN)194379191(EXLCZ)99371000000073470920160630d2016 u| 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierApproximate solutions of common fixed-point problems /by Alexander J. Zaslavski1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (457 p.)Springer Optimization and Its Applications,1931-6828 ;112Description based upon print version of record.3-319-33253-8 Includes bibliographical references and index.1.Introduction -- 2. Dynamic string-averaging methods in Hilbert spaces -- 3. Iterative methods in metric spaces -- 4. Dynamic string-averaging methods in normed spaces -- 5. Dynamic string-maximum methods in metric spaces -- 6. Spaces with generalized distances -- 7. Abstract version of CARP algorithm -- 8. Proximal point algorithm -- 9. Dynamic string-averaging proximal point algorithm -- 10. Convex feasibility problems -- 11. Iterative subgradient projection algorithm -- 12. Dynamic string-averaging subgradient projection algorithm.– References.– Index. .This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces .Springer Optimization and Its Applications,1931-6828 ;112Calculus of variationsNumerical analysisOperator theoryCalculus of Variations and Optimal Control; Optimizationhttps://scigraph.springernature.com/ontologies/product-market-codes/M26016Numerical Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M14050Operator Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M12139Calculus of variations.Numerical analysis.Operator theory.Calculus of Variations and Optimal Control; Optimization.Numerical Analysis.Operator Theory.510Zaslavski Alexander Jauthttp://id.loc.gov/vocabulary/relators/aut721713MiAaPQMiAaPQMiAaPQBOOK9910254098403321Approximate solutions of common fixed-point problems1523163UNINA