01041nam a22002531i 450099100345936970753620030822142657.0031111s1967 gw |||||||||||||||||ger b12429521-39ule_instARCHE-046281ExLDip.to LingueitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.Krahe, Hans189345Historische Laut- und Formenlehre des Gotischen :zugleich eine Einfuhrung in die germanische Sprachwissenschaft /Hans Krahe2. Aufl. bearbeitet von Elmar SeeboldHeidelberg :Winter,1967151 p. ;20 cmSprachwissenschaftliche StudienbucherSeebold, Elmar.b1242952102-04-1413-11-03991003459369707536LE012 F.G. 85412012000064133le012-E0.00-l- 00000.i1285351313-11-03Historische Laut- und Formenlehre des Gotischen166752UNISALENTOle01213-11-03ma -gergw 0101068nam a2200265 i 4500991002703619707536150316s1962 yu ab 000 0 ger db14219086-39ule_instBibl. Dip.le Aggr. DiSTeBA - Sez. Biologiaeng593.522Pax, Ferdinand88680Die Anthozoenfauna der Adria /[von] Ferdinand Pax und Ingeborg MullerFauna antozoa JadranaSplit :Institut fur Ozeanographie und Fischerei,1962343 p.ill., maps, tables ;30 cmFauna et flora Adriatica,3AnthozoaCtenophoraAdriatic SeaMuller, Ingeborgauthorhttp://id.loc.gov/vocabulary/relators/aut732788.b1421908616-03-1516-03-15991002703619707536LE003 Fondo Parenzan 593 PAX1 (1962)1le003gE0.00-s- 00000.i1566190816-03-15Anthozoenfauna der Adria1443750UNISALENTOle00316-03-15ma geryu 4005198nam 22007815 450 991025408750332120220405171904.03-319-39228-X10.1007/978-3-319-39228-8(CKB)3710000000872811(DE-He213)978-3-319-39228-8(MiAaPQ)EBC4699882(PPN)195512359(EXLCZ)99371000000087281120160927d2016 u| 0engurnn#008mamaatxtrdacontentcrdamediacrrdacarrierAdvances in iterative methods for nonlinear equations /edited by Sergio Amat, Sonia Busquier1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (V, 286 p. 117 illus., 113 illus. in color.)SEMA SIMAI Springer Series,2199-3041 ;103-319-39227-1 Includes bibliographical references at the end of each chapters.1 S. Amat, S. Busquier, A. A. Magrenan and L. Orcos: An overview on Steffensen-type methods -- 2 Ioannis K. Argyros and Daniel Gonzalez: Newton’s Method for Convex Optimization -- 3 I. K. Argyros and Á. A. Magreñán: Inexact Newton methods on Riemannian Manifolds -- 4 Alicia Cordero and Juan R. Torregrosa: On the design of optimal iterative methods for solving nonlinear equations -- 5 J. A. Ezquerro and M. A. Hernandez-Veron: The theory of Kantorovich for Newton's method: conditions on the second derivative -- 6 J.-C. Yakoubsohn, J. M. Gutiérrez and Á. A. Magreñán: Complexity of an homotopy method at the neighbourhood of a zero -- 7 M. A. Hernandez-Veron and N. Romero: A qualitative analysis of a family of Newton-like iterative process with R-order of convergence at least three -- 8 J. M. Gutierrez, L. J. Hernandez, Á. A. Magreñán and M. T. Rivas: Measures of the basins of attracting n-cycles for the relaxed Newton's method -- 9 Miquel Grau-Sanchez and Miquel Noguera: On convergence and efficiency in the resolution of systems of nonlinear equations from a local analysis.This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation. .SEMA SIMAI Springer Series,2199-3041 ;10Numerical analysisDynamicsErgodic theoryFunctional analysisDifference equationsFunctional equationsComputer scienceMathematicsAlgorithmsNumerical Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M14050Dynamical Systems and Ergodic Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M1204XFunctional Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12066Difference and Functional Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12031Computational Science and Engineeringhttps://scigraph.springernature.com/ontologies/product-market-codes/M14026Algorithmshttps://scigraph.springernature.com/ontologies/product-market-codes/M14018Numerical analysis.Dynamics.Ergodic theory.Functional analysis.Difference equations.Functional equations.Computer scienceMathematics.Algorithms.Numerical Analysis.Dynamical Systems and Ergodic Theory.Functional Analysis.Difference and Functional Equations.Computational Science and Engineering.Algorithms.518.26Amat Sergioedthttp://id.loc.gov/vocabulary/relators/edtBusquier Soniaedthttp://id.loc.gov/vocabulary/relators/edtMiAaPQMiAaPQMiAaPQBOOK9910254087503321Advances in iterative methods for nonlinear equations1523079UNINA