01935nam 2200469 450 991022934930332120140909132834.0(CKB)3710000001424172(OCoLC)890208856(EXLCZ)99371000000142417220140909d2013 ua 0enguran|||||||||rdacontentrdamediardacarrierLegislation on use of water in agriculture[Washington, D.C.] :the Law Library of Congress, Global Legal Research Center,2013.1 online resource (89 pages)Title from title screen (viewed Sept. 9, 2014)."October 2013.""This report summarizes legislation concerning the agricultural use of water in nineteen countries in Latin America, the Middle East, and Central Asia; ... the countries covered are Afghanistan, Argentina, Brazil, Chile, Egypt, Iran, Israel, Kyrgyzstan, Tajikistan, Uzbekistan, Lebanon, Iraq, Saudi Arabia, Yemen, Libya, Mexico, Nicaragua, Turkey, and Venezuela"--PDF file, p. 1.Includes bibliographical references.Water useLaw and legislationLatin AmericaWater useLaw and legislationMiddle EastWater useLaw and legislationAsia, CentralAgricultureLatin AmericaAgricultureMiddle EastAgricultureAsia, CentralWater useLaw and legislationWater useLaw and legislationWater useLaw and legislationAgricultureAgricultureAgricultureLaw Library of Congress (U.S.).Global Legal Research Directorate,GPOGPOBOOK9910229349303321Legislation on Use of Water in Agriculture2273841UNINA10501nam 22004453 450 991083506850332120240220080208.01-119-87064-X1-119-87062-3(MiAaPQ)EBC31167451(Au-PeEL)EBL31167451(EXLCZ)993040482830004120240220d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierCatalysis for a Sustainable Environment Reactions, Processes and Applied Technologies, 3 Volume Set1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (930 pages)1-119-87052-6 Intro -- Catalysis for a Sustainable Environment -- Contents -- 1 Introduction -- Structure of the Book -- Final Remarks -- Part I Carbon Dioxide Utilization -- 2 Transition from Fossil-C to Renewable-C (Biomass and CO2) Driven by Hybrid Catalysis -- 2.1 Introduction -- 2.2 The Dimension of the Problem -- 2.3 Substitutes for Fossil-C -- 2.4 Hybrid Catalysis: A New World -- 2.5 Hybrid Catalysis and Biomass Valorization -- 2.6 Hybrid Catalysis and CO2 Conversion -- 2.6.1 CO2 as Building Block -- 2.6.2 CO2 Conversion to Value-added Chemical and Fuels via Hybrid Systems -- 2.7 Conclusions -- References -- 3 Synthesis of Acetic Acid Using Carbon Dioxide -- 3.1 Introduction -- 3.2 Synthesis of Methanol from CO2 and H2 -- 3.3 Carbonylation of Methanol Using CO2 -- 3.4 Carbonylation of Methane Using CO2 -- 3.5 Miscellaneous Reactions, Particularly Biocatalysis -- 3.6 Conclusions -- References -- 4 New Sustainable Chemicals and Materials Derived from CO2 and Bio-based Resources:A New Catalytic Challenge -- 4.1 Introduction -- 4.2 Cyclic Carbonates from Bio-based Epoxides -- 4.2.1 Bio-based Epoxides Derived from Terpenes -- 4.2.2 Bio-based Vinylcyclohexene Oxide Derived from Butanediol -- 4.2.3 Bio-based Epichlorohydrin Derived from Glycerol -- 4.2.4 Epoxidized Vegetable Oils and Fatty Acids -- 4.3 Cyclic Carbonates Derived from Carbohydrates -- 4.4 Cyclic Carbonates Derived from Bio-based Diols -- 4.5 Conclusions -- Acknowledgements -- References -- 5 Sustainable Technologies in CO2 Utilization: The Production of Synthetic Natural Gas -- 5.1 CO2 Valorization Strategies -- 5.1.1 CO2 to CO via Reverse Water-Gas Shift (RWGS) Reaction -- 5.1.2 CO2 to CH4 -- 5.1.3 CO2 to CxHy -- 5.1.4 CO2 to CH3OH -- 5.1.5 CO2 to CH3OCH3 -- 5.1.6 CO2 to R-OH -- 5.1.7 CO2 to HCOOH, R-COOH, and R-CONH2 -- 5.1.8 Target Products Analysis Based on Thermodynamics.5.2 Power-to-Gas: Sabatier Reaction Suitability for Renewable Energy Storage -- 5.3 CO2 Methanation Catalysts -- 5.4 Zeolites: Suitable Supports with Tunable Properties to Assess Catalysts's Performance -- 5.5 Final Remarks -- References -- 6 Catalysis for Sustainable Aviation Fuels: Focus on Fischer-Tropsch Catalysis -- 6.1 Introduction -- 6.1.1 Sustainable Aviation Fuels (SAF) via Fischer-Tropsch-based Routes -- 6.1.2 Introduction to FT Chemistry -- 6.1.3 FT Catalysts for SAF Production -- 6.1.4 Reactor Technology for SAF Production Using FTS -- 6.2 State-of-the-art Cobalt Catalysts -- 6.2.1 Catalyst Preparation Routes for Cobalt-based Catalysts -- 6.2.1.1 Precipitation Methodology - a Short Summary -- 6.2.1.2 Preparation Methods Using Pre-shaped Supports -- 6.2.1.2.1 Support Modification -- 6.2.1.2.2 Cobalt Impregnation -- 6.2.1.2.3 Calcination -- 6.2.1.2.4 Reduction -- 6.2.2 Challenges for Catalysts Operating with High Carbon Efficiency: Water Tolerance -- 6.2.3 Strategies to Increase Water Tolerance and Selectivity for Cobalt Catalysts -- 6.2.3.1 Optimizing Physico-chemical Support Properties for Stability at High Water Partial Pressure -- 6.2.3.2 Stabilizing the Support by Surface Coating -- 6.2.3.3 Impact of Crystallite Size on Selectivity -- 6.2.3.4 Metal Support Interactions with Cobalt Crystallites of Varying Size -- 6.2.3.5 The Role of Reduction Promoters and Support Promoters in Optimizing Selectivity -- 6.2.3.6 Role of Pore Diameter in Selectivity -- 6.2.3.7 Effect of Activation Conditions on Selectivity -- 6.2.4 Regeneration of Cobalt PtL Catalysts- Moving Toward Materials Circularity -- 6.3 An Overview of Fe Catalysts: Direct Route for CO2 Conversion -- 6.3.1 Introduction -- 6.3.2 Effect of Temperature -- 6.3.3 Effect of Pressure -- 6.3.4 Effect of H2:CO Ratio -- 6.3.5 Catalyst Development -- 6.3.6 Stability to Oxidation by Water.6.3.7 Sufficient Surface Area -- 6.3.8 Availability of Two Distinct Catalytically Active Sites/phases -- 6.3.9 Sufficient Alkalinity for Adsorption and Chain Growth -- 6.4 Future Perspectives -- References -- 7 Sustainable Catalytic Conversion of CO2 into Urea and Its Derivatives -- 7.1 Introduction -- 7.2 Catalytic Synthesis of Urea -- 7.2.1 Urea from CO2 Reductive Processes -- 7.2.1.1 Electrocatalysis -- 7.2.1.2 Photocatalysis -- 7.2.1.3 Magneto-catalysis -- 7.2.2 Urea from Ammonium Carbamate -- 7.3 Catalytic Synthesis of Urea Derivatives -- 7.4 Conclusions and Future Perspectives -- Part II Transformation of Volatile Organic Compounds (VOCs) -- 8 Catalysis Abatement of NOx/VOCs Assisted by Ozone -- 8.1 NOx/VOC Emission and Treatment Technologies -- 8.1.1 NOx/VOC Emissions -- 8.1.2 NOx Treatment Technologies -- 8.1.2.1 SNCR -- 8.1.2.2 SCR -- 8.1.2.3 SCR Catalysts -- 8.1.2.4 Ozone-assisted Oxidation Technology -- 8.1.3 VOC Treatment Technologies -- 8.1.3.1 Adsorption -- 8.1.3.2 Regenerative Combustion -- 8.1.3.3 Catalytic Oxidation -- 8.1.3.4 Photocatalytic Oxidation -- 8.1.3.5 Plasma-assisted Catalytic Oxidation -- 8.2 NO Oxidation by Ozone -- 8.2.1 NO Homogeneous Oxidation by Ozone -- 8.2.1.1 Effect of O3/NO Ratio -- 8.2.1.2 Effect of Temperature -- 8.2.1.3 Effect of Residence Time -- 8.2.1.4 Process Parameter Optimization -- 8.2.2 Heterogeneous Catalytic Deep Oxidation -- 8.2.2.1 Catalytic NO Deep Oxidation by O3 Alone -- 8.2.2.2 Catalytic NO Deep Oxidation by Combination of O3 and H2O -- 8.3 Oxidation of VOCs by Ozone -- 8.3.1 Aromatics -- 8.3.1.1 Toluene -- 8.3.1.2 Benzene -- 8.3.2 Oxygenated VOCs -- 8.3.2.1 Formaldehyde -- 8.3.2.2 Acetone -- 8.3.2.3 Alcohols -- 8.3.3 Chlorinated VOCs -- 8.3.3.1 Chlorobenzene -- 8.3.3.2 Dichloromethane -- 8.3.3.3 Dioxins and Furans -- 8.3.4 Sulfur-containing VOCs -- 8.4 Conclusions -- References.9 Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions -- 9.1 Introduction -- 9.2 Benzene -- 9.3 Toluene -- 9.4 Ethylbenzene -- 9.5 Xylene -- 9.6 Final Remarks -- Acknowledgments -- References -- 10 Catalytic Cyclohexane Oxyfunctionalization -- 10.1 Introduction -- 10.2 Transition Metal Catalysts for Cyclohexane Oxidation -- 10.2.1 Vanadium Catalysts -- 10.2.2 Iron Catalysts -- 10.2.3 Cobalt Catalysts -- 10.2.4 Copper Catalysts -- 10.2.5 Molybdenum Catalysts -- 10.2.6 Rhenium Catalysts -- 10.2.7 Gold Catalysts -- 10.3 Mechanisms -- 10.4 Final Comments -- Acknowledgments -- References -- Part III Carbon-based Catalysis -- 11 Carbon-based Catalysts for Sustainable Chemical Processes -- 11.1 Introduction -- 11.1.1 Nanostructured Carbon Materials -- 11.1.2 Carbon Surface Chemistry -- 11.2 Metal-free Carbon Catalysts for Environmental Applications -- 11.2.1 Wet Air Oxidation and Ozonation with Carbon Catalysts -- 11.3.1 Carbon Materials as Catalysts and Supports -- 11.3.2 Cascade Valorization of Biomass with Multifunctional Catalysts -- 11.3.3 Carbon Catalysts Produced from Biomass -- 11.3 Carbon-based Catalysts for Sustainable Production of Chemicals and Fuels from Biomass -- 11.4 Summary and Outlook -- Acknowledgments -- References -- 12 Carbon-based Catalysts as a Sustainable and Metal-free Tool for Gas-phase Industrial Oxidation Processes -- 12.1 Introduction -- 12.2 The H2S Selective Oxidation to Elemental Sulfur -- 12.3 Alkane Dehydrogenation -- 12.3.1 Alkane Dehydrogenation under Oxidative Environment: The ODH Process -- 12.3.2 Alkane Dehydrogenation under Steam- and Oxygen-free Conditions: The DDH Reaction -- 12.4 Conclusions -- Acknowledgments -- References -- 13 Hybrid Carbon-Metal Oxide Catalysts for Electrocatalysis, Biomass Valorization and, Wastewater Treatment: Cutting-Edge Solutions for a Sustainable World.13.1 Introduction -- 13.2 Hybrid Carbon-metal Oxide Electrocatalysts for Energy-related Applications -- 13.2.1 Oxygen Reduction Reaction (ORR) -- 13.2.2 Oxygen Evolution Reaction (OER) -- 13.2.3 Hydrogen Evolution Reaction (HER) -- 13.2.4 CO2 Reduction Reaction (CO2RR) -- 13.3 Biomass Valorization over Hybrid Carbon-metal Oxide Based (Nano)catalysts -- 13.4 Advanced (Photo)catalytic Oxidation Processes for Wastewater Treatment -- 13.4.1 Heterogeneous Fenton Process -- 13.4.2 Heterogeneous photo-Fenton Process -- 13.4.3 Heterogeneous electro-Fenton Process -- 13.4.4 Photocatalytic Oxidation -- 13.5 Advanced Catalytic Reduction Processes for Wastewater Treatment -- 13.6 Conclusions and Future Perspectives -- Acknowledgments -- References -- Part IV Coordination, Inorganic, and Bioinspired Catalysis -- 14 Hydroformylation Catalysts for the Synthesis of Fine Chemicals -- 14.1 Introduction -- 14.2 Homogeneous Catalytic Systems -- 14.2.1 Development of Phosphorus Ligands -- 14.2.2 Hydroformylation of Biologically Relevant Substrates -- 14.2.3 Hydroformylation-based Sequential Reactions -- 14.3 Heterogeneized Catalytic Systems -- 14.4 Conclusions -- References -- 15 Synthesis of New Polyolefins by Incorporation of New Comonomers -- 15.1 Introduction -- 15.2 Synthesis of New Ethylene Copolymers by Incorporation of Sterically Encumbered Olefins, Cyclic Olefins -- 15.2.1 Ethylene Copolymerization with Sterically Encumbered Olefins -- 15.2.2 Ethylene Copolymerization with Cyclic Olefins -- 15.3 Ethylene Copolymerization with Alken-1-ol for Introduction of Hydroxy Groups into Polylefins -- 15.4 Synthesis of Biobased Ethylene Copolymers by the Incorporation of Linear and Cyclic Terpenes -- 15.5 Concluding Remarks and Outlook -- Acknowledgements -- References -- 16 Catalytic Depolymerization of Plastic Waste -- 16.1 Introduction -- 16.2 Pyrolysis.16.3 Gasification.541.395Pombeiro Armando J. LSutradhar ManasAlegria Elisabete C. B. AMiAaPQMiAaPQMiAaPQBOOK9910835068503321UNINA