01299nam--2200421---450-99000282539020331620061011100755.088-387-3473-9000282539USA01000282539(ALEPH)000282539USA0100028253920061011d2006----km-y0itay50------baitaIT||||||||001yyManuale di psicologia dell'emergenzaAntonio ZulianiSantarcangelo di RomagnaMaggiolic 2006275 p.24 cmProgetto ente locale212001Progetto ente locale200122001001-------2001CalamitàEffetti psicologiciEmergenzaComportamentoAssistenza psicologica155.9ZULIANI,Antonio595004ITsalbcISBD990002825390203316II.3. 2910(VIps B 1309)49916 G.II.3.00177969BKUMAFIORELLA9020061011USA011007CHIARA9020081106USA011424CHIARA9020110517USA011014CHIARA9020110517USA011015Manuale di psicologia dell'emergenza993912UNISA03593nam 22006615 450 991016309630332120251116170908.0981-10-3316-110.1007/978-981-10-3316-2(CKB)3710000001022115(MiAaPQ)EBC4787321(DE-He213)978-981-10-3316-2(PPN)198338899(EXLCZ)99371000000102211520170113d2016 u| 0engurcnu||||||||rdacontentrdamediardacarrierRandom matrix theory with an external source /by Edouard Brézin, Shinobu Hikami1st ed. 2016.Singapore :Springer Singapore :Imprint: Springer,2016.1 online resource (143 pages)SpringerBriefs in Mathematical Physics,2197-1757 ;19981-10-3315-3 Includes bibliographical references and index.This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.SpringerBriefs in Mathematical Physics,2197-1757 ;19Mathematical physicsStatistical physicsTopological groupsLie groupsNuclear physicsDynamicsMathematical Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/M35000Statistical Physics and Dynamical Systemshttps://scigraph.springernature.com/ontologies/product-market-codes/P19090Topological Groups, Lie Groupshttps://scigraph.springernature.com/ontologies/product-market-codes/M11132Particle and Nuclear Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P23002Complex Systemshttps://scigraph.springernature.com/ontologies/product-market-codes/P33000Mathematical physics.Statistical physics.Topological groups.Lie groups.Nuclear physics.Dynamics.Mathematical Physics.Statistical Physics and Dynamical Systems.Topological Groups, Lie Groups.Particle and Nuclear Physics.Complex Systems.512.9434Brézin E.authttp://id.loc.gov/vocabulary/relators/aut53516Hikami Shinobuauthttp://id.loc.gov/vocabulary/relators/autBOOK9910163096303321Random Matrix Theory with an External Source2070238UNINA