06701nam 22017775 450 991015475230332120190708092533.01-4008-8242-710.1515/9781400882427(CKB)3710000000620149(SSID)ssj0001651285(PQKBManifestationID)16426208(PQKBTitleCode)TC0001651285(PQKBWorkID)14458522(PQKB)10159283(MiAaPQ)EBC4738720(DE-B1597)467961(OCoLC)979633761(DE-B1597)9781400882427(iGPub)PUPB0005391(EXLCZ)99371000000062014920190708d2016 fg engurcnu||||||||txtccrHarmonic Analysis in Phase Space. (AM-122), Volume 122 /Gerald B. FollandPrinceton, NJ : Princeton University Press, [2016]©19891 online resource (289 pages) illustrationsAnnals of Mathematics Studies ;353Bibliographic Level Mode of Issuance: Monograph0-691-08527-7 0-691-08528-5 Includes bibliographical references and index.Frontmatter -- CONTENTS -- PREFACE -- PROLOGUE. SOME MATTERS OF NOTATION -- CHAPTER 1. THE HEISENBERG GROUP AND ITS REPRESENTATIONS -- CHAPTER 2. QUANTIZATION AND PSEUDODIFFERENTIAL OPERATORS -- CHAPTER 3. WAVE PACKETS AND WAVE FRONTS -- CHAPTER 4. THE METAPLECTIC REPRESENTATION -- CHAPTER 5. THE OSCILLATOR SEMIGROUP -- APPENDIX A. GAUSSIAN INTEGRALS AND A LEMMA ON DETERMINANTS -- APPENDIX B. SOME HILBERT SPACE RESULTS -- BIBLIOGRAPHY -- INDEXThis book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.Annals of mathematics studies ;no. 122.Phase space (Statistical physics)Harmonic analysisAnalytic continuation.Analytic function.Antisymmetric tensor.Asymptotic expansion.Automorphism.Bilinear form.Bounded operator.Calculation.Canonical commutation relation.Canonical transformation.Cauchy–Riemann equations.Cayley transform.Class function (algebra).Classical mechanics.Commutative property.Complex analysis.Configuration space.Differential equation.Differential geometry.Differential operator.Eigenvalues and eigenvectors.Equation.Explicit formula.Fock space.Fourier analysis.Fourier integral operator.Fourier transform.Functional analysis.Gaussian function.Gaussian integral.Geometric quantization.Hamiltonian mechanics.Hamiltonian vector field.Harmonic analysis.Heisenberg group.Hermite polynomials.Hermitian symmetric space.Hilbert space.Hilbert transform.Integral transform.Invariant subspace.Irreducible representation.Lebesgue measure.Lie algebra.Lie superalgebra.Lie theory.Mathematical physics.Number theory.Observable.Ordinary differential equation.Orthonormal basis.Oscillator representation.Oscillatory integral.Partial differential equation.Phase factor.Phase space.Point at infinity.Poisson bracket.Polynomial.Power series.Probability.Projection (linear algebra).Projective Hilbert space.Projective representation.Projective space.Pseudo-differential operator.Pullback (category theory).Quadratic function.Quantum harmonic oscillator.Quantum mechanics.Representation theory.Schrödinger equation.Self-adjoint operator.Semigroup.Several complex variables.Siegel disc.Sobolev space.Spectral theorem.Spectral theory.State-space representation.Stone's theorem.Stone–Weierstrass theorem.Summation.Symmetric space.Symmetric tensor.Symplectic geometry.Symplectic group.Symplectic vector space.Symplectomorphism.Tangent space.Tangent vector.Theorem.Translational symmetry.Unbounded operator.Unit vector.Unitarity (physics).Unitary operator.Unitary representation.Variable (mathematics).Wave packet.Phase space (Statistical physics)Harmonic analysis.530.1/3Folland Gerald B., 41512DE-B1597DE-B1597BOOK9910154752303321Harmonic Analysis in Phase Space. (AM-122), Volume 1222670337UNINA