05261nam 22015015 450 991015475150332120190708092533.01-4008-8174-910.1515/9781400881741(CKB)3710000000620160(SSID)ssj0001651304(PQKBManifestationID)16425921(PQKBTitleCode)TC0001651304(PQKBWorkID)13103104(PQKB)10677234(MiAaPQ)EBC4738572(DE-B1597)467978(OCoLC)979968792(DE-B1597)9781400881741(EXLCZ)99371000000062016020190708d2016 fg engurcnu||||||||txtccrNormal Two-Dimensional Singularities. (AM-71), Volume 71 /Henry B. LauferPrinceton, NJ : Princeton University Press, [2016]©19721 online resource (177 pages) illustrationsAnnals of Mathematics Studies ;275Bibliographic Level Mode of Issuance: Monograph0-691-08100-X Includes bibliographical references and index.Frontmatter -- PREFACE -- INTRODUCTION -- CONTENTS -- CHAPTER I. RESOLUTION OF PLANE CURVE SINGULARITIES -- CHAPTER II. RESOLUTION OF SINGULARITIES OF TWO-DIMENSIONAL ANALYTIC SPACES -- CHAPTER III. NORMALIZATION OF TWO-DIMENSIONAL ANALYTIC SPACES -- CHAPTER IV. EXCEPTIONAL SETS -- CHAPTER V. MINIMAL RESOLUTIONS -- CHAPTER VI. EQUIVALENCE OF EMBEDDINGS -- CHAPTER VII. THE LOCAL RING STRUCTURE -- BIBLIOGRAPHY -- INDEXA survey, thorough and timely, of the singularities of two-dimensional normal complex analytic varieties, the volume summarizes the results obtained since Hirzebruch's thesis (1953) and presents new contributions. First, the singularity is resolved and shown to be classified by its resolution; then, resolutions are classed by the use of spaces with nilpotents; finally, the spaces with nilpotents are determined by means of the local ring structure of the singularity.Annals of mathematics studies ;Number 71.Analytic spacesSingularities (Mathematics)Analytic function.Analytic set.Analytic space.Automorphism.Bernhard Riemann.Big O notation.Calculation.Chern class.Codimension.Coefficient.Cohomology.Compact Riemann surface.Complex manifold.Computation.Connected component (graph theory).Continuous function.Contradiction.Coordinate system.Corollary.Covering space.Dimension.Disjoint union.Divisor.Dual graph.Elliptic curve.Elliptic function.Embedding.Existential quantification.Factorization.Fiber bundle.Finite set.Formal power series.Hausdorff space.Holomorphic function.Homeomorphism.Homology (mathematics).Intersection (set theory).Intersection number (graph theory).Inverse limit.Irreducible component.Isolated singularity.Iteration.Lattice (group).Line bundle.Linear combination.Line–line intersection.Local coordinates.Local ring.Mathematical induction.Maximal ideal.Meromorphic function.Monic polynomial.Nilpotent.Normal bundle.Open set.Parameter.Plane curve.Pole (complex analysis).Power series.Presheaf (category theory).Projective line.Quadratic transformation.Quantity.Riemann surface.Riemann–Roch theorem.Several complex variables.Submanifold.Subset.Tangent bundle.Tangent space.Tensor algebra.Theorem.Topological space.Transition function.Two-dimensional space.Variable (mathematics).Zero divisor.Zero of a function.Zero set.Analytic spaces.Singularities (Mathematics)515/.92/23Laufer Henry B., 48505DE-B1597DE-B1597BOOK9910154751503321Normal Two-Dimensional Singularities. (AM-71), Volume 712788799UNINA