01036nam a2200241 a 4500991000731629707536100517s2002 it 000 0 ita d9788849503982b13902660-39ule_instFacoltà SSPTita320.01Tucci, Antonio473032Individualita' e politica :le contraddizioni della teoria politica identitaria in epoca tardo moderna /Antonio TucciNapoli ; Roma :Edizioni Scientifiche Italiane,2002258 p. ;24 cmUniversita' degli Studi di Salerno, Dipartimento di Teoria e Storia del diritto.Sezione di Storia e Filosofia giuridico-politicaFilosofia politica.b1390266002-04-1417-05-10991000731629707536LE021 320.01 TUC01.0112020000025047le021pE18.70-n- 00000.i1512804017-05-10Individualita' e politica227265UNISALENTOle02010-05-10ma -itait 0003987nam 22006135 450 991015474550332120190708092533.01-4008-8251-610.1515/9781400882519(CKB)3710000000631327(SSID)ssj0001651253(PQKBManifestationID)16425331(PQKBTitleCode)TC0001651253(PQKBWorkID)12183564(PQKB)10810515(MiAaPQ)EBC4738736(DE-B1597)467967(OCoLC)979747115(DE-B1597)9781400882519(Perlego)736278(EXLCZ)99371000000063132720190708d2016 fg engurcnu||||||||txtccrCommensurabilities among Lattices in PU (1,n). (AM-132), Volume 132 /G. Daniel Mostow, Pierre DelignePrinceton, NJ : Princeton University Press, [2016]©19941 online resource (196 pages) illustrationsAnnals of Mathematics Studies ;313Bibliographic Level Mode of Issuance: Monograph0-691-00096-4 0-691-03385-4 Includes bibliographical references.Frontmatter -- CONTENTS -- ACKNOWLEDGMENTS -- §1. INTRODUCTION -- §2. PICARD GROUP AND COHOMOLOGY -- §3. COMPUTATIONS FOR Q AND Q+ -- §4. LAURICELLA'S HYPERGEOMETRIC FUNCTIONS -- §5. GELFAND'S DESCRIPTION OF HYPERGEOMETRIC FUNCTIONS -- §6. STRICT EXPONENTS -- §7. CHARACTERIZATION OF HYPERGEOMETRIC-LIKE LOCAL SYSTEMS -- §8. PRELIMINARIES ON MONODROMY GROUPS -- §9. BACKGROUND HEURISTICS -- §10. SOME COMMENSURABILITY THEOREMS -- §11. ANOTHER ISOGENY -- §12. COMMENSURABILITY AND DISCRETENESS -- §13. AN EXAMPLE -- §14. ORBIFOLD -- §15. ELLIPTIC AND EUCLIDEAN μ'S, REVISITED -- §16. LIVNE'S CONSTRUCTION OF LATTICES IN PU(1,2) -- §17. LIN E ARRANGEMENTS: QUESTIONS -- BibliographyThe first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.Annals of mathematics studies ;no. 132.Hypergeometric functionsMonodromy groupsLattice theoryHypergeometric functions.Monodromy groups.Lattice theory.515/.25Deligne Pierre, 42896Mostow G. Daniel, DE-B1597DE-B1597BOOK9910154745503321Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 1322785739UNINA