01397nam 2200349Ka 450 991069585520332120070530083342.0(CKB)5470000002373238(OCoLC)137260210(EXLCZ)99547000000237323820070530d2000 ua 0engtxtrdacontentcrdamediacrrdacarrierGenerating continuous surface probability maps from airborne video using two sampling intensities along the video transect[electronic resource] /Dennis M. Jacobs and William H. Cooke IIIAsheville, NC :U.S. Dept. of Agriculture, Forest Service, Southern Research Station,[2000]5 pages digital, PDF fileResearch paper SRS ;22Title from title screen (viewed May 29, 2007)"September 2000"--P. [2] of cover.Aerial photography in forestryAerial photography in forestry.Jacobs Dennis M1421575Cooke William H1421576United States.Forest Service.Southern Research Station.GPOGPOBOOK9910695855203321Generating continuous surface probability maps from airborne video using two sampling intensities along the video transect3543243UNINA06901nam 22017415 450 991015474300332120190708092533.01-4008-8253-210.1515/9781400882533(CKB)3710000000631389(MiAaPQ)EBC4738737(DE-B1597)468002(OCoLC)954123965(OCoLC)990415133(DE-B1597)9781400882533(EXLCZ)99371000000063138920190708d2016 fg engurcnu||||||||rdacontentrdamediardacarrierTemperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134 /Louis H. Kauffman, Sostenes LinsPrinceton, NJ : Princeton University Press, [2016]©19941 online resource (308 pages) illustrationsAnnals of Mathematics Studies ;3150-691-03641-1 0-691-03640-3 Includes bibliographical references and index.Frontmatter -- Contents -- Chapter 1. Introduction -- Chapter 2. Bracket Polynomial, Temperley-Lieb Algebra -- Chapter 3. Jones-Wenzl Projectors -- Chapter 4. The 3-Vertex -- Chapter 5. Properties of Projectors and 3-Vertices -- Chapter 6. θ-Evaluations -- Chapter 7. Recoupling Theory Via Temperley-Lieb Algebra -- Chapter 8. Chromatic Evaluations and the Tetrahedron -- Chapter 9. A Summary of Recoupling Theory -- Chapter 10. A 3-Manifold Invariant by State Summation -- Chapter 11. The Shadow World -- Chapter 12. The Witten-Reshetikhin- Turaev Invariant -- Chapter 13. Blinks ↦ 3-Gems: Recognizing 3-Manifolds -- Chapter 14. Tables of Quantum Invariants -- Bibliography -- IndexThis book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.Annals of mathematics studies ;no. 134.Knot theoryThree-manifolds (Topology)Invariants3-manifold.Addition.Algorithm.Ambient isotopy.Axiom.Backslash.Barycentric subdivision.Bijection.Bipartite graph.Borromean rings.Boundary parallel.Bracket polynomial.Calculation.Canonical form.Cartesian product.Cobordism.Coefficient.Combination.Commutator.Complex conjugate.Computation.Connected component (graph theory).Connected sum.Cubic graph.Diagram (category theory).Dimension.Disjoint sets.Disjoint union.Elaboration.Embedding.Equation.Equivalence class.Explicit formula.Explicit formulae (L-function).Factorial.Fundamental group.Graph (discrete mathematics).Graph embedding.Handlebody.Homeomorphism.Homology (mathematics).Identity element.Intersection form (4-manifold).Inverse function.Jones polynomial.Kirby calculus.Knot theory.Line segment.Linear independence.Matching (graph theory).Mathematical physics.Mathematical proof.Mathematics.Maxima and minima.Monograph.Natural number.Network theory.Notation.Numerical analysis.Orientability.Orthogonality.Pairing.Pairwise.Parametrization.Parity (mathematics).Partition function (mathematics).Permutation.Poincaré conjecture.Polyhedron.Quantum group.Quantum invariant.Recoupling.Recursion.Reidemeister move.Result.Roger Penrose.Root of unity.Scientific notation.Sequence.Significant figures.Simultaneous equations.Smoothing.Special case.Sphere.Spin network.Summation.Symmetric group.Tetrahedron.The Geometry Center.Theorem.Theory.Three-dimensional space (mathematics).Time complexity.Tubular neighborhood.Two-dimensional space.Vector field.Vector space.Vertex (graph theory).Winding number.Writhe.Knot theory.Three-manifolds (Topology)Invariants.514/.224Kauffman Louis H., 57757Lins Sostenes, DE-B1597DE-B1597BOOK9910154743003321Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 1342785665UNINA