02730nam 22004335a 450 991015193460332120091109150325.03-03719-565-710.4171/065(CKB)3710000000953829(CH-001817-3)83-091109(PPN)178155454(EXLCZ)99371000000095382920091109j20080704 fy 0engurnn|mmmmamaatxtrdacontentcrdamediacrrdacarrierGeometric Invariant Theory and Decorated Principal Bundles[electronic resource] /Alexander H.W. SchmittZuerich, Switzerland European Mathematical Society Publishing House20081 online resource (396 pages)Zurich Lectures in Advanced Mathematics (ZLAM)The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the universal Kobayashi-Hitchin correspondence, these moduli spaces are related to moduli spaces of solutions of certain vortex type equations. Potential applications include the study of representation spaces of the fundamental group of compact Riemann surfaces. The book concludes with a brief discussion of generalizations of these findings to higher dimensional base varieties, positive characteristic, and parabolic bundles. The text is fairly self-contained (e.g., the necessary background from the theory of principal bundles is included) and features numerous examples and exercises. It addresses students and researchers with a working knowledge of elementary algebraic geometry.Algebraic geometrybicsscFields & ringsbicsscAlgebraic geometrymscCommutative rings and algebrasmscAlgebraic geometryFields & ringsAlgebraic geometryCommutative rings and algebras14-xx13-xxmscSchmitt Alexander H.W.1070607ch0018173BOOK9910151934603321Geometric Invariant Theory and Decorated Principal Bundles2564458UNINA