03250nam 22004575a 450 991015193210332120100519234500.03-03719-581-910.4171/081(CKB)3710000000953854(CH-001817-3)113-100519(PPN)178155748(EXLCZ)99371000000095385420100519j20100519 fy 0engurnn|mmmmamaatxtrdacontentcrdamediacrrdacarrierLectures on Dynamical Systems[electronic resource] Hamiltonian Vector Fields and Symplectic Capacities /Eduard ZehnderZuerich, Switzerland European Mathematical Society Publishing House20101 online resource (363 pages)EMS Textbooks in Mathematics (ETB)This book originated from an introductory lecture course on dynamical systems given by the author for advanced students in mathematics and physics at the ETH Zurich. The first part centres around unstable and chaotic phenomena caused by the occurrence of homoclinic points. The existence of homoclinic points complicates the orbit structure considerably and gives rise to invariant hyperbolic sets nearby. The orbit structure in such sets is analyzed by means of the shadowing lemma, whose proof is based on the contraction principle. This lemma is also used to prove S. Smale's theorem about the embedding of Bernoulli systems near homoclinic orbits. The chaotic behavior is illustrated in the simple mechanical model of a periodically perturbed mathematical pendulum. The second part of the book is devoted to Hamiltonian systems. The Hamiltonian formalism is developed in the elegant language of the exterior calculus. The theorem of V. Arnold and R. Jost shows that the solutions of Hamiltonian systems which possess sufficiently many integrals of motion can be written down explicitly and for all times. The existence proofs of global periodic orbits of Hamiltonian systems on symplectic manifolds are based on a variational principle for the old action functional of classical mechanics. The necessary tools from variational calculus are developed. There is an intimate relation between the periodic orbits of Hamiltonian systems and a class of symplectic invariants called symplectic capacities. From these symplectic invariants one derives surprising symplectic rigidity phenomena. This allows a first glimpse of the fast developing new field of symplectic topology.Calculus of variationsbicsscDynamical systems and ergodic theorymscOrdinary differential equationsmscDifferential geometrymscMechanics of particles and systemsmscCalculus of variationsDynamical systems and ergodic theoryOrdinary differential equationsDifferential geometryMechanics of particles and systems37-xx34-xx53-xx70-xxmscZehnder Eduard42588ch0018173BOOK9910151932103321Lectures on Dynamical Systems2565663UNINA