01343nam 2200433z 450 991014914010332120200806040543.04-339-10851-04-339-20851-5(CKB)3710000000471754(JP-MeL)3000017733(JP-MeKC)3000397275(EXLCZ)99371000000047175420211007d2013 ||| |jpnur|n||||un|||ncrcontentncrmediancrcarrierナノ構造エレクトロニクス入門 / 土屋英昭著東京コロナ社2013.9東京 : コロナ社, 2013オンライン資料1件引用・参考文献: p[234]-2414-339-00851-6 Introduction to nanostructure electronics880-03/$1電子工学jlabsh880-04/$1ナノテクノロジーjlabsh880-05/$1ナノエレクトロニクスndlsh電子工学ナノテクノロジーナノエレクトロニクス549njb/09土屋 英昭JP-MeLBOOK9910149140103321ナノ構造エレクトロニクス入門3409049UNINA03665nam 22005895 450 991035024580332120251218201238.0981-13-8075-910.1007/978-981-13-8075-4(CKB)4100000008876861(MiAaPQ)EBC5836940(DE-He213)978-981-13-8075-4(PPN)238486389(MiAaPQ)EBC6225088(EXLCZ)99410000000887686120190723d2019 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierEuclidean Design Theory /by Masanori Sawa, Masatake Hirao, Sanpei Kageyama1st ed. 2019.Singapore :Springer Nature Singapore :Imprint: Springer,2019.1 online resource (139 pages)JSS Research Series in Statistics,2364-0065981-13-8074-0 Chapter I: Reproducing Kernel Hilbert Space -- Chapter II: Cubature Formula -- Chapter III: Optimal Euclidean Design -- Chapter IV: Constructions of Optimal Euclidean Design -- Chapter V: Euclidean Design Theory.This book is the modern first treatment of experimental designs, providing a comprehensive introduction to the interrelationship between the theory of optimal designs and the theory of cubature formulas in numerical analysis. It also offers original new ideas for constructing optimal designs. The book opens with some basics on reproducing kernels, and builds up to more advanced topics, including bounds for the number of cubature formula points, equivalence theorems for statistical optimalities, and the Sobolev Theorem for the cubature formula. It concludes with a functional analytic generalization of the above classical results. Although it is intended for readers who are interested in recent advances in the construction theory of optimal experimental designs, the book is also useful for researchers seeking rich interactions between optimal experimental designs and various mathematical subjects such as spherical designs in combinatorics and cubature formulas in numerical analysis, both closely related to embeddings of classical finite-dimensional Banach spaces in functional analysis and Hilbert identities in elementary number theory. Moreover, it provides a novel communication platform for “design theorists” in a wide variety of research fields.JSS Research Series in Statistics,2364-0065StatisticsMathematical statisticsData processingStatisticsStatistical Theory and MethodsStatistics and ComputingStatistics in Engineering, Physics, Computer Science, Chemistry and Earth SciencesStatistics in Business, Management, Economics, Finance, InsuranceStatistics.Mathematical statisticsData processing.Statistics.Statistical Theory and Methods.Statistics and Computing.Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.Statistics in Business, Management, Economics, Finance, Insurance.519.5Sawa Masanoriauthttp://id.loc.gov/vocabulary/relators/aut781851Hirao Masatakeauthttp://id.loc.gov/vocabulary/relators/autKageyama Sanpei1945-authttp://id.loc.gov/vocabulary/relators/autBOOK9910350245803321Euclidean Design Theory2523258UNINA