01031nam a2200229 a 450099100337385970753620230328103713.0220620s2022 xx r 000 0 eng db14324076-39ule_instDip.to di Storia, Società e Studi sull'UomoitaCambi, Franco144462Scuola e "establishment" pedagogico : approccio sistemico o teoria dell'emancipazione? /Franco CambiFirenze :Le Monier,1989P. 540-550 ;24 cmAnnali della Pubblica Istruzioneestratto da : Annali della Pubblica Istruzione anno 35 n. 4-5.b1432407625-05-1718-05-17991003373859707536LE02312023000171684le023Fondo Angelo Semeraro DR n. 414 del 6/6/2016gE1.00-no00000.i1580761724-05-17Scuola e "establishment" pedagogico : approccio sistemico o teoria dell'emancipazione3376725UNISALENTOle02318-05-17manitait0003636nam 22008295 450 991014631300332120250730104802.03-540-47022-010.1007/BFb0103064(CKB)1000000000437293(SSID)ssj0000325366(PQKBManifestationID)12116393(PQKBTitleCode)TC0000325366(PQKBWorkID)10321709(PQKB)11050538(DE-He213)978-3-540-47022-9(MiAaPQ)EBC5610669(Au-PeEL)EBL5610669(OCoLC)1078995943(MiAaPQ)EBC6812146(Au-PeEL)EBL6812146(OCoLC)1287131741(PPN)155177729(EXLCZ)99100000000043729320121227d1999 u| 0engurnn#008mamaatxtccrOn the Geometry of Diffusion Operators and Stochastic Flows /by K.D. Elworthy, Y. Le Jan, Xue-Mei Li1st ed. 1999.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1999.1 online resource (V, 105 p.)Lecture Notes in Mathematics,1617-9692 ;1720Bibliographic Level Mode of Issuance: Monograph3-540-66708-3 Construction of connections -- The infinitesimal generators and associated operators -- Decomposition of noise and filtering -- Application: Analysis on spaces of paths -- Stability of stochastic dynamical systems -- Appendices.Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.Lecture Notes in Mathematics,1617-9692 ;1720ProbabilitiesFunctional analysisGeometry, DifferentialGlobal analysis (Mathematics)Manifolds (Mathematics)Probability TheoryFunctional AnalysisDifferential GeometryGlobal Analysis and Analysis on ManifoldsProbabilities.Functional analysis.Geometry, Differential.Global analysis (Mathematics)Manifolds (Mathematics)Probability Theory.Functional Analysis.Differential Geometry.Global Analysis and Analysis on Manifolds.519.23358G32msc53B05msc60H10mscElworthy K. D.50902Le Jan Y.1952-Li X-M.1964-MiAaPQMiAaPQMiAaPQBOOK9910146313003321Geometry of diffusion operators and stochastic flows374265UNINA