02849nam 2200649 450 991014630270332120220305041825.03-540-69804-310.1007/BFb0096380(CKB)1000000000437324(SSID)ssj0000326445(PQKBManifestationID)12069589(PQKBTitleCode)TC0000326445(PQKBWorkID)10297552(PQKB)10099285(DE-He213)978-3-540-69804-3(MiAaPQ)EBC5577526(Au-PeEL)EBL5577526(OCoLC)1066199632(MiAaPQ)EBC6842503(Au-PeEL)EBL6842503(OCoLC)1292352992(PPN)155190784(EXLCZ)99100000000043732420220305d1998 uy 0engurnn|008mamaatxtccrSchubert varieties and degeneracy loci /William Fulton, Piotr Pragacz1st ed. 1998.Berlin, Heidelberg :Springer-Verlag,[1998]©19981 online resource (X, 150 p.)Lecture Notes in Mathematics ;1689Bibliographic Level Mode of Issuance: Monograph3-540-64538-1 to degeneracy loci and schubert polynomials -- Modern formulation; Grassmannians, flag varieties, schubert varieties -- Symmetric polynomials useful in geometry -- Polynomials supported on degeneracy loci -- The Euler characteristic of degeneracy loci -- Flag bundles and determinantal formulas for the other classical groups -- and polynomial formulas for other classical groups -- The classes of Brill-Noether loci in Prym varieties -- Applications and open problems.Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.Lecture notes in mathematics (Springer-Verlag) ;1689.Schubert varietiesIntersection theory (Mathematics)Vector bundlesSchubert varieties.Intersection theory (Mathematics)Vector bundles.516.35Fulton William1939-41611Pragacz PiotrMiAaPQMiAaPQMiAaPQBOOK9910146302703321Schubert varieties and degeneracy Loci261853UNINA