02572nam 22006375 450 991014628560332120250801064936.03-540-68347-X10.1007/BFb0093387(CKB)1000000000437359(SSID)ssj0000324256(PQKBManifestationID)12064887(PQKBTitleCode)TC0000324256(PQKBWorkID)10304534(PQKB)10272447(DE-He213)978-3-540-68347-6(MiAaPQ)EBC5585359(Au-PeEL)EBL5585359(OCoLC)1066185242(MiAaPQ)EBC6842714(Au-PeEL)EBL6842714(OCoLC)1292358845(PPN)155197363(EXLCZ)99100000000043735920121227d1997 u| 0engurnn#008mamaatxtccrKnots and Links in Three-Dimensional Flows /by Robert W. Ghrist, Philip J. Holmes, Michael C. Sullivan1st ed. 1997.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1997.1 online resource (X, 214 p.)Lecture Notes in Mathematics,1617-9692 ;1654Bibliographic Level Mode of Issuance: Monograph3-540-62628-X Prerequisites -- Templates -- Template theory -- Bifurcations -- Invariants -- Concluding remarks.The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed.Lecture Notes in Mathematics,1617-9692 ;1654Manifolds (Mathematics)Manifolds and Cell ComplexesManifolds (Mathematics)Manifolds and Cell Complexes.51057M25mscGhrist Robert W.1969-61533Holmes Philip1945-Sullivan Michael C.1959-MiAaPQMiAaPQMiAaPQBOOK9910146285603321Knots and links in three-dimensional flows262439UNINA