00958oam 2200241z- 450 991014577180332120181218131228.0(CKB)1000000000278871(EXLCZ)99100000000027887120170717c1999uuuu -u- -itaLa contre-réforme mathématique constitution et diffusion d'une culture mathématique jésuite à la Renaissance (1540-1640) /par Antonella Romano2-7283-0568-4 MathematicsStudy and teaching (Higher)EuropeHistory16th centuryMathematicsStudy and teaching (Higher)EuropeHistory17th centuryMathematicsStudy and teaching (Higher)HistoryMathematicsStudy and teaching (Higher)History510/.71/1409031Romano Antonella76639BOOK9910145771803321La contre-réforme mathématique2852574UNINA05250nam 2200637Ia 450 991101878790332120200520144314.01-280-52028-097866105202823-527-60519-33-527-60237-2(CKB)1000000000019324(EBL)481773(OCoLC)68941223(SSID)ssj0000159701(PQKBManifestationID)11137633(PQKBTitleCode)TC0000159701(PQKBWorkID)10158411(PQKB)11018238(MiAaPQ)EBC481773(EXLCZ)99100000000001932420040308d2004 uy 0engur|n|---|||||txtccrFunctional hybrid materials /edited by Pedro Gomez-Romero, Clement SanchezWeinheim Wiley-VCH ;[Chichester John Wiley] [distributor]c20041 online resource (437 p.)Description based upon print version of record.3-527-30484-3 Includes bibliographical references and index.Functional Hybrid Materials; Table of Contents; Preface; List of Contributors; 1 Hybrid Materials, Functional Applications. An Introduction; 1.1 From Ancient Tradition to 21st Century Materials; 1.2 Hybrid Materials. Types and Classifications; 1.3 General Strategies for the Design of Functional Hybrids; 1.4 The Road Ahead; 2 Organic-Inorganic Materials: From Intercalation Chemistry to Devices; 2.1 Introduction; 2.2 Types of Hybrid Organic-Inorganic Materials; 2.2.1 Intercalation Compounds; 2.2.1.1 Intercalation of Ionic Species; 2.2.1.2 Intercalation of Neutral Species2.2.1.3 Polymer Intercalations: Nanocomposites2.2.2 Organic Derivatives of Inorganic Solids; 2.2.3 Sol-Gel Hybrid Materials; 2.3 Functions & Devices Based on Organic-Inorganic Solids; 2.3.1 Selective Sorbents, Complexing Agents & Membranes; 2.3.2 Heterogeneous Catalysts & Supported Reagents; 2.3.3 Photoactive, Optical and Opto-Electronic Materials & Devices; 2.3.4 Electrical Behaviors: Ionic & Electronic Conductors; 2.3.5 Electroactivity & Electrochemical Devices; 2.4 Conclusions; 3 Bridged Polysilsesquioxanes. Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials3.1 Introduction3.2 Historical Background; 3.3 Monomer Synthesis; 3.3.1 Metallation; 3.3.2 Hydrosilylation; 3.3.3 Functionalization of an Organotrialkoxysilane; 3.3.4 Other Approaches; 3.4 Sol-Gel Processing of Bridged Polysilsesquioxanes; 3.4.1 Hydrolysis and Condensation; 3.4.2 Gelation; 3.4.3 Aging and Drying; 3.5 Characterization of Bridged Polysilsesquioxanes; 3.5.1 Porosity in Bridged Polysilsesquioxanes; 3.5.2 Pore Size Control; 3.5.3 Pore Templating; 3.6 Influence of Bridging Group on Nanostructures; 3.6.1 Surfactant Templated Mesoporous Materials; 3.6.2 Mesogenic Bridging Groups3.6.3 Supramolecular Organization3.6.4 Metal Templating; 3.7 Thermal Stability and Mechanical Properties; 3.8 Chemical Properties; 3.9 Applications; 3.9.1 Optics and Electronics; 3.9.1.1 Dyes; 3.9.1.2 Nano- and Quantum Dots in Bridged Polysilsesquioxanes; 3.9.2 Separations Media; 3.9.3 Catalyst Supports and Catalysts; 3.9.4 Metal and Organic Adsorbents; 3.10 Summary; 4 Porous Inorganic-Organic Hybrid Materials; 4.1 Introduction; 4.2 Inorganic-Network Formation; 4.3 Preparation and Properties; 4.3.1 Aerogels; 4.3.2 M41S materials4.4 Methods for Introducing Organic Groups into Inorganic Materials4.5 Porous Inorganic-Organic Hybrid Materials; 4.5.1 Functionalization of Porous Inorganic Materials by Organic Groups; 4.5.1.1 Post-synthesis Modification; 4.5.1.2 Liquid-Phase Modification in the Wet Gel Stage or Prior to Surfactant Removal; 4.5.1.3 Addition of Non-Reactive Compounds to the Precursor Solution; 4.5.1.4 Use of Organically Substituted Co-precursors; 4.5.2 Bridged Silsequioxanes; 4.5.3 Incorporation of Metal Complexes for Catalysis; 4.5.4 Incorporation of Biomolecules; 4.5.5 Incorporation of Polymers4.5.6 Creation of Carbon StructuresFunctional Hybrid Materials consist of both organic and inorganic components, assembled for the purpose of generating desirable properties and functionalities. The aim is twofold: to bring out or enhance advantageous chemical, electrochemical, magnetic or electronic characteristics and at the same time to reduce or wholly suppress undesirable properties or effects. Another target is the creation of entirely new material behavior.The vast number of hybrid material components available has opened up a wide and diversified field of fascinating research. In this book, a team of highly renownedComposite materialsNanostructured materialsComposite materials.Nanostructured materials.620.1/18620.118620.19Gomez-Romero Pedro1841661Sanchez Clement802325MiAaPQMiAaPQMiAaPQBOOK9911018787903321Functional hybrid materials4421479UNINA